4 4 Rajendran, A., Endo, M., and Sugiyama, H. (2012). Single‐molecule analysis using DNA origami. Angewandte Chemie 51: 874–890.
5 5 Torring, T., Voigt, N.V., Nangreave, J. et al. (2011). DNA origami: a quantum leap for self‐assembly of complex structures. Chemical Society Reviews 40: 5636–5646.
6 6 Rothemund, P.W. (2006). Folding DNA to create nanoscale shapes and patterns. Nature 440: 297–302.
7 7 Fu, T.J. and Seeman, N.C. (1993). DNA double‐crossover molecules. Biochemistry‐US 32: 3211–3220.
8 8 Yurke, B., Turberfield, A.J., Mills, A.P. Jr. et al. (2000). A DNA‐fuelled molecular machine made of DNA. Nature 406: 605–608.
9 9 Yan, H., Zhang, X., Shen, Z., and Seeman, N.C. (2002). A robust DNA mechanical device controlled by hybridization topology. Nature 415: 62–65.
10 10 Winfree, E., Liu, F.R., Wenzler, L.A., and Seeman, N.C. (1998). Design and self‐assembly of two‐dimensional DNA crystals. Nature 394: 539–544.
11 11 LaBean, T.H., Yan, H., Kopatsch, J. et al. (2000). Construction, analysis, ligation, and self‐assembly of DNA triple crossover complexes. Journal of the American Chemical Society 122: 1848–1860.
12 12 Ding, B.Q., Sha, R.J., and Seeman, N.C. (2004). Pseudohexagonal 2D DNA crystals from double crossover cohesion. Journal of the American Chemical Society 126: 10230–10231.
13 13 Liu, D., Wang, M., Deng, Z. et al. (2004). Tensegrity: construction of rigid DNA triangles with flexible four‐arm DNA junctions. Journal of the American Chemical Society 126: 2324–2325.
14 14 Yan, H., Park, S.H., Finkelstein, G. et al. (2003). DNA‐templated self‐assembly of protein arrays and highly conductive nanowires. Science 301: 1882–1884.
15 15 Mathieu, F., Liao, S., Kopatsch, J. et al. (2005). Six‐helix bundles designed from DNA. Nano Letters 5: 661–665.
16 16 Bath, J. and Turberfield, A.J. (2007). DNA nanomachines. Nature Nanotechnology 2: 275–284.
17 17 Mao, C., Sun, W., Shen, Z., and Seeman, N.C. (1999). A nanomechanical device based on the B‐Z transition of DNA. Nature 397: 144–146.
18 18 Endo, M., Sugita, T., Katsuda, Y. et al. (2010). Inside cover: programmed‐assembly system using DNA jigsaw pieces. Chemistry 16: 5228.
19 19 Woo, S. and Rothemund, P.W. (2011). Programmable molecular recognition based on the geometry of DNA nanostructures. Nature Chemistry 3: 620–627.
20 20 Rajendran, A., Endo, M., Katsuda, Y. et al. (2011). Programmed two‐dimensional self‐assembly of multiple DNA origami jigsaw pieces. ACS Nano 5: 665–671.
21 21 Zhao, Z., Liu, Y., and Yan, H. (2011). Organizing DNA origami tiles into larger structures using preformed scaffold frames. Nano Letters 11: 2997–3002.
22 22 Liu, W., Zhong, H., Wang, R., and Seeman, N.C. (2011). Crystalline two‐dimensional DNA‐origami arrays. Angewandte Chemie International Edition 50: 264–267.
23 23 Suzuki, Y., Endo, M., and Sugiyama, H. (2015). Lipid‐bilayer‐assisted two‐dimensional self‐assembly of DNA origami nanostructures. Nature Communications 6: 8052.
24 24 Endo, M., Sugita, T., Rajendran, A. et al. (2011). Two‐dimensional DNA origami assemblies using a four‐way connector. Chemical Communications 47: 3213–3215.
25 25 Douglas, S.M., Dietz, H., Liedl, T. et al. (2009a). Self‐assembly of DNA into nanoscale three‐dimensional shapes. Nature 459: 414–418.
26 26 Andersen, E.S., Dong, M., Nielsen, M.M. et al. (2009). Self‐assembly of a nanoscale DNA box with a controllable lid. Nature 459: 73–76.
27 27 Han, D., Pal, S., Nangreave, J. et al. (2011). DNA origami with complex curvatures in three‐dimensional space. Science 332: 342–346.
28 28 Douglas, S.M., Marblestone, A.H., Teerapittayanon, S. et al. (2009b). Rapid prototyping of 3D DNA‐origami shapes with caDNAno. Nucleic Acids Research 37: 5001–5006.
29 29 Dietz, H., Douglas, S.M., and Shih, W.M. (2009). Folding DNA into twisted and curved nanoscale shapes. Science 325: 725–730.
30 30 Kuzuya, A. and Komiyama, M. (2009). Design and construction of a box‐shaped 3D‐DNA origami. Chemical Communications 4182–4184.
31 31 Endo, M., Hidaka, K., and Sugiyama, H. (2011). Direct AFM observation of an opening event of a DNA cuboid constructed via a prism structure. Organic & Biomolecular Chemistry 9: 2075–2077.
32 32 Ke, Y., Sharma, J., Liu, M. et al. (2009). Scaffolded DNA origami of a DNA tetrahedron molecular container. Nano Letters 9: 2445–2447.
33 33 Endo, M., Hidaka, K., Kato, T. et al. (2009). DNA prism structures constructed by folding of multiple rectangular arms. Journal of American Chemical Society 131: 15570–15571.
34 34 Sharma, J., Chhabra, R., Andersen, C.S. et al. (2008). Toward reliable gold nanoparticle patterning on self‐assembled DNA nanoscaffold. Journal of the American Chemical Society 130: 7820–7821.
35 35 Ding, B., Deng, Z., Yan, H. et al. (2010). Gold nanoparticle self‐similar chain structure organized by DNA origami. Journal of the American Chemical Society 132: 3248–3249.
36 36 Sacca, B., Meyer, R., Erkelenz, M. et al. (2010). Orthogonal protein decoration of DNA origami. Angewandte Chemie International Edition 49: 9378–9383.
37 37 Fu, J., Liu, M., Liu, Y. et al. (2012). Interenzyme substrate diffusion for an enzyme cascade organized on spatially addressable DNA nanostructures. Journal of the American Chemical Society 134: 5516–5519.
38 38 Stein, I.H., Steinhauer, C., and Tinnefeld, P. (2011). Single‐molecule four‐color FRET visualizes energy‐transfer paths on DNA origami. Journal of American Chemical Society 133: 4193–4195.
39 39 Chhabra, R., Sharma, J., Ke, Y. et al. (2007). Spatially addressable multiprotein nanoarrays templated by aptamer‐tagged DNA nanoarchitectures. Journal of American Chemical Society 129: 10304–10305.
40 40 Shen, W., Zhong, H., Neff, D., and Norton, M.L. (2009). NTA directed protein nanopatterning on DNA Origami nanoconstructs. Journal American Chemical Society 131: 6660–6661.
41 41 Rinker, S., Ke, Y., Liu, Y. et al. (2008). Self‐assembled DNA nanostructures for distance‐dependent multivalent ligand‐protein binding. Nature Nanotechnology 3: 418–422.
42 42 Kuzuya, A., Kimura, M., Numajiri, K. et al. (2009). Precisely programmed and robust 2D streptavidin nanoarrays by using periodical nanometer‐scale wells embedded in DNA origami assembly. Chembiochem: A European Journal of Chemical Biology 10: 1811–1815.
43 43 Mandell, J.G. and Barbas, C.F. 3rd. (2006). Zinc finger tools: custom DNA‐binding domains for transcription factors and nucleases. Nucleic Acids Research 34: W516–W523.
44 44 Sander, J.D., Zaback, P., Joung, J.K. et al. (2007). Zinc finger targeter (ZiFiT): an engineered zinc finger/target site design tool. Nucleic Acids Research 35: W599–W605.
45 45 Nakata, E., Liew, F.F., Uwatoko, C. et al. (2012). Zinc‐finger proteins for site‐specific protein positioning on DNA‐origami structures. Angewandte Chemie 51: 2421–2424.
46 46 Bando, T. and Sugiyama, H. (2006). Synthesis and biological properties of sequence‐specific DNA‐alkylating pyrrole‐imidazole polyamides. Accounts of Chemical Research 39: 935–944.
47 47 Yoshidome, T., Endo, M., Kashiwazaki, G. et al. (2012). Sequence‐selective single‐molecule alkylation with a pyrrole‐imidazole polyamide visualized in a DNA nanoscaffold. Journal of the American Chemical Society 134: 4654–4660.
48 48 Ke, Y., Lindsay, S., Chang, Y. et al. (2008). Self‐assembled water‐soluble nucleic acid probe tiles for label‐free RNA hybridization assays. Science 319: 180–183.
49 49 Voigt, N.V., Torring,