Calculus: 1001 Practice Problems For Dummies (+ Free Online Practice). Patrick Jones. Читать онлайн. Newlib. NEWLIB.NET

Автор: Patrick Jones
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Математика
Год издания: 0
isbn: 9781119883678
Скачать книгу
of each interval, determine which interval contains a root of the function math by the intermediate value theorem:

      (A) math

      (B) math

      (C) math

      (D) math

      (E) math

      269. By checking only the endpoints of each interval, determine which interval contains a root of the function math by the intermediate value theorem:

      (A) math

      (B) math

      (C) math

      (D) math

      (E) math

      270. By checking only the endpoints of each interval, determine which interval contains a solution to the equation math according to the intermediate value theorem:

      (A) math

      (B) math

      (C) math

      (D) math

      (E) math

      271. By checking only the endpoints of each interval, determine which interval contains a solution to the equation math according to the intermediate value theorem:

      (A) math

      (B) math

      (C) math

      (D) math

      (E) math

      Derivative Basics

      The derivative is one of the great ideas in calculus. In this chapter, you see the formal definition of a derivative. Understanding the formal definition is crucial, because it tells you what a derivative actually is. Unfortunately, computing the derivative using the definition can be quite cumbersome and is often very difficult. After finding derivatives using the definition, you see problems that use the power rule, which is the start of some techniques that make finding the derivative much easier — although still challenging in many cases.

      In this chapter, you see the definition of a derivative and one of the first shortcut formulas, the power rule. Here's what the problems cover:

       Using a variety of algebraic techniques to find the derivative using the definition of a derivative

       Evaluating the derivative at a point using a graph and slopes of tangent lines

       Encountering a variety of derivative questions that you can solve using the power rule

      Using the definition of a derivative to evaluate derivatives can involve quite a bit of algebra, so be prepared. Having all the shortcut techniques is very nice, but you’ll be asked to find derivatives for complicated functions, so the problems will still be challenging! Keep some of the following points in mind:

       Remember your algebra techniques: factoring, multiplying by conjugates, working with fractions, and more. Many students get tripped up on one part and then can't finish the problem, so know that many problems require multiple steps.

       When interpreting the value of a derivative from a graph, think about the slope of the tangent line on the graph at a given point; you’ll be well on your way to finding the correct solution.

       Simplifying functions using algebra and trigonometric identities before finding the derivative makes many problems much easier. Simplifying is one of the very first things you should consider when encountering a “find the derivative” question of any type.

       272–276 Use the graph to determine for which values of x the function is not differentiable.

      272.

A graph is shown to determine differentiability.

      273.

A graph is shown to determine differentiability.

      274.

A graph is shown to determine differentiability.

      275.

A graph is shown to determine differentiability.

      276.

      277–290 Find the derivative by using the definition math.

      277. math

      278. math

      279. Скачать книгу