Звуки с непрерывным спектром воспринимаются как шумы. Если полоса частот не слишком широка, мы можем грубо оценить высоту звука: рычание тигра – низкий звук (полоса низких частот), крик павлина – высокий. Если частоты более-менее равномерно распределены по всему звуковому диапазону, получается так называемый белый шум (пример: рёв близкого водопада).
Пение птиц ещё труднее передать звуками музыки, чем звучание колоколов, хотя шумом его тоже не назовёшь. С точки зрения спектра, это нечто промежуточное между звоном колокола и шумом. Каждая «нота» птичьего пения содержит не ряд кратных частот, как музыкальный звук, и не набор отдельных обертонов, как звук колокола, а несколько узких непрерывных полос частот, причем эти полосы во время песни «ползут» вверх или вниз по шкале частот, совершают резкие взлёты и падения. Именно эти взлёты и падения при переводе птичьего пения на язык музыки композиторы имитируют скачками на те или иные интервалы.
Частоты некоторых птичьих голосов простираются до 50 тысяч герц, уходя в область ультразвука, так что мы слышим лишь часть их песен.
Очень короткие звуки (стук в дверь, хлопок в ладоши) также воспринимаются как немузыкальные. Ведь нашему слуховому аппарату требуется некоторое время для определения периода колебаний и частоты основного тона, а при коротких звуках он просто не успевает это сделать. Спектры коротких звуков непрерывны, как и спектры шумов. Если ширина полосы частот невелика, мы можем приблизительно определить высоту тона, особенно в сравнении с другими подобными звуками. Вспомните, например, детский деревянный ксилофон, состоящий из дощечек разной длины. Удар по одной дощечке воспринимается просто как стук (немузыкальный звук), но ударяя по ряду дощечек-клавиш, мы уже слышим гамму.
Как создать музыкальный звук?
Одни предметы издают музыкальные звуки, а другие – немузыкальные. Самый простой, известный с древних времён источник музыкальных звуков – натянутая струна. Именно с изучения звучания струн началась математическая теория музыки, и основы её заложил в Древней Греции Пифагор (570–490 гг. до н. э.).
Самые простые движения, которые могут совершать точки струны, изображены схематически на рисунке 5: каждая точка движется туда-сюда, словно маятник, в результате струна изгибается так, что её форма