Pre-Calculus: 1001 Practice Problems For Dummies (+ Free Online Practice). Mary Jane Sterling. Читать онлайн. Newlib. NEWLIB.NET

Автор: Mary Jane Sterling
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Математика
Год издания: 0
isbn: 9781119883647
Скачать книгу
416

      419 417

      420 418

      421 419

      422 420

      423 421

      424 422

      425 423

      426 424

      427 425

      428 426

      429 427

      430 428

      431 429

      432 430

      433 431

      434 432

      435 433

      436 434

      437 435

      438 436

      439 437

      440 438

      441 439

      442 440

      443 441

      444 442

      445 443

      446 444

      447 445

      448 446

      449 447

      450 448

      451 449

      452 450

      453 451

      454 452

      455 453

      456 454

      457 455

      458 456

      459  457

      460 458

      461 459

      462  460

      463 461

      464 462

      465 463

      466 464

      467 465

      468 466

      469 467

      470 468

      471 469

      472 470

      473 471

      474 472

      475 473

      476 474

      477 475

      478 476

      479 477

      480 478

      481 479

      482 480

      483 481

      484 482

      485 483

      486 484

      487 485

      488 486

      489 487

      490 488

      491 489

      492 490

      493 491

      494 492

      495 493

      496 494

      497 495

      498 496

      499 497

      500 498

      501 499

      502 500

      503 501

      504 502

      505 503

      506 504

      507 505

      508 506

      509 507

      510 508

      511 509

      512 510

      513 511

      514 512

      515  513

      516 514

      517 515

      518 516

      519 517

      520 518

      521 519

      522 520

      523 521

      524 522

      525 523

      526 524

      527 525

      528 526

      529 527

      530 528

      531 529

      532 530

      533 531

      534 532

      535 533

      536 534

      537 535

      538 536

      539 537

      540  539

      541 540

      542 541

      543 542

      544 543

      545 544

      546 545

      547  547

      548  548

      549  549

      Pre-calculus is a rather difficult topic to define or describe. There’s a little bit of this, a lot of that, and a smattering of something else. But you need the mathematics considered to be pre-calculus to proceed to what changed me into a math major: calculus! Yes, believe it or not, I started out as a biology major — inspired by my high school biology teacher. Then I got to the semester where I was taking invertebrate zoology, chemistry, and calculus. (Yes, all at the same time.) All of a sudden, there was a bright light! An awakening! “So this is what mathematics can be!” Haven’t turned back since. Calculus did it for me, and my great preparation for calculus made the adventure wonderful.

      Pre-calculus contains a lot of algebra, some trigonometry, some geometry, and some analytic geometry. These topics all get tied together, mixed up, and realigned until out pops the mathematics you’ll use when working with calculus. I keep telling my calculus students that “calculus is 60 percent algebra.” Maybe my figures are off a bit, but believe me, you can’t succeed in calculus without a good background in algebra (and trigonometry). The geometry is very helpful, too.

      Why would you do 1,001 pre-calculus problems? Because practice makes perfect. Unlike other subjects where you can just read or listen and absorb the information sufficiently, mathematics takes practice. The only way to figure out how the different algebraic and trigonometric rules work and interact with one another, or how measurements in degrees and radians fit into the big picture, is to get into the problems — get your hands dirty, so to speak. Many problems given here may appear to be the same on the surface, but different aspects and challenges have been inserted to make them unique. The concepts become more set in your mind when you work with the problems and have your solutions confirm the properties.