1 Abadin, H., Ashizawa, A., Stevens, Y.W., Llados, F., Diamond, G., Sage, G., Citra, M., Quinones, A., Bosch, S.J., and Swarts, S.G. (2007). Toxicological Profile for Lead. Atlanta, GA: Agency for Toxic Substances and Disease Registry.
2 Aleckovic, M. and Kang, Y. (2015). Regulation of cancer metastasis by cell-free miRNAs. Biochim. Biophys. Acta 1855: 24–42.
3 Alli, L.A. (2015). Blood level of cadmium and lead in occupationally exposed persons in Gwagwalada, Abuja, Nigeria. Interdiscip. Toxicol. 8: 146–150.
4 Amini, P., Ettlin, J., Opitz, L., Clementi, E., Malbon, A., and Markkanen, E. (2017). An optimised protocol for isolation of RNA from small sections of laser-capture microdissected FFPE tissue amenable for next-generation sequencing. BMC Mol. Biol. 18: 22.
5 Amrani, I., Haddam, N., Garat, A., Allorge, D., Zerimech, F., Schraen, S., Taleb, A., Merzouk, H., Edme, J.L., and Lo-Guidice, J.M. (2020). Exposure to metal fumes and circulating miRNAs in Algerian welders. Int. Arch. Occup. Environ. Health 93: 553–561.
6 Armstrong, C.W., Stroube, R.B., Rubio, T., Siudyla, E.A., and Miller, G.B. Jr. (1984). Outbreak of fatal arsenic poisoning caused by contaminated drinking water. Arch. Environ. Health 39: 276–279.
7 Aryani, A. and Denecke, B. (2015). In vitro application of ribonucleases: Comparison of the effects on mRNA and miRNA stability. BMC Res. Notes 8: 164.
8 ATSDR. 2019. ATSDR’s Substance Priority List [Online]. ATSDR. https://www.atsdr.cdc.gov/spl/index.html (accessed June 21, 2021).
9 Ayotte, J.D., Medalie, L., Qi, S.L., Backer, L.C., and Nolan, B.T. (2017). Estimating the high-arsenic domestic-well population in the conterminous United States. Environ. Sci. Technol. 51: 12443–12454.
10 Balali-Mood, M., Naseri, K., Tahergorabi, Z., Khazdair, M.R., and Sadeghi, M. (2021). Toxic mechanisms of five heavy metals: Mercury, lead, chromium, cadmium, and arsenic. Front Pharmacol. 12: 643972.
11 Banerjee, N., Bandyopadhyay, A.K., Dutta, S., Das, J.K., Roy Chowdhury, T., Bandyopadhyay, A., and Giri, A.K. (2017). Increased microRNA 21 expression contributes to arsenic induced skin lesions, skin cancers and respiratory distress in chronically exposed individuals. Toxicology 378: 10–16.
12 Banerjee, N., Das, S., Tripathy, S., Bandyopadhyay, A.K., Sarma, N., Bandyopadhyay, A., and Giri, A.K. (2019). MicroRNAs play an important role in contributing to arsenic susceptibility in the chronically exposed individuals of West Bengal, India. Environ. Sci. Pollut. Res. Int. 26: 28052–28061.
13 Barcelo, M., Castells, M., Bassas, L., Vigues, F., and Larriba, S. (2019). Semen miRNAs contained in exosomes as non-invasive biomarkers for prostate cancer diagnosis. Sci. Rep. 9: 13772.
14 Beck, R., Bommarito, P., Douillet, C., Kanke, M., Del Razo, L.M., Garcia-Vargas, G., Fry, R.C., Sethupathy, P., and Styblo, M. (2018). Circulating miRNAs associated with arsenic exposure. Environ. Sci. Technol. 52: 14487–14495.
15 Bernhoft, R.A. (2013). Cadmium toxicity and treatment. Sci. World J. 7: 394652.
16 Bollati, V., Marinelli, B., Apostoli, P., Bonzini, M., Nordio, F., Hoxha, M., Pegoraro, V., Motta, V., Tarantini, L., Cantone, L., Schwartz, J., Bertazzi, P.A., and Baccarelli, A. (2010). Exposure to metal-rich particulate matter modifies the expression of candidate microRNAs in peripheral blood leukocytes. Environ. Health Perspect. 118: 763–768.
17 Bonneau, E., Neveu, B., Kostantin, E., Tsongalis, G.J., and Guire, D.E. (2019). How close are miRNAs from clinical practice? A perspective on the diagnostic and therapeutic market. EJIFCC 30: 114–127.
18 Califf, R.M. (2018). Biomarker definitions and their applications. Exp. Biol. Med. (Maywood) 243: 213–221.
19 Cardenas-Gonzalez, M., Osorio-Yanez, C., Gaspar-Ramirez, O., Pavkovic, M., Ochoa-Martinez, A., Lopez-Ventura, D., Medeiros, M., Barbier, O.C., Perez-Maldonado, I.N., Sabbisetti, V.S., Bonventre, J.V., and Vaidya, V.S. (2016). Environmental exposure to arsenic and chromium in children is associated with kidney injury molecule-1. Environ. Res. 150: 653–662.
20 CDC. (2012). Response to Advisory Commitee on Childhood Lead Poisoning Prevention recommendations in Low Level Lead Exposure Harms Children: A Renewed Call for Primary Prevention. https://www.cdc.gov/nceh/lead/acclpp/cdc_response_lead_exposure_recs.pdf.
21 Chen, J., Lai, W., Deng, Y., Liu, M., Dong, M., Liu, Z., Wang, T., Li, X., Zhao, Z., Yin, X., Yang, J., Yu, R., and Liu, L. (2021). MicroRNA-363-3p promotes apoptosis in response to cadmium-induced renal injury by down-regulating phosphoinositide 3-kinase expression. Toxicol. Lett. 345: 12–23.
22 Cheng, H., Hu, P., Wen, W., and Liu, L. (2018). Relative miRNA and mRNA expression involved in arsenic methylation. PLoS One 13: e0209014.
23 Cheng, H.H., Yi, H.S., Kim, Y., Kroh, E.M., Chien, J.W., Eaton, K.D., Goodman, M.T., Tait, J.F., Tewari, M., and Pritchard, C.C. (2013). Plasma processing conditions substantially influence circulating microRNA biomarker levels. PLoS One 8: e64795.
24 Clarkson, T.W. and Magos, L. (2006). The toxicology of mercury and its chemical compounds. Crit. Rev. Toxicol. 36: 609–662.
25 Cohen, S.M., Arnold, L.L., Beck, B.D., Lewis, A.S., and Eldan, M. (2013). Evaluation of the carcinogenicity of inorganic arsenic. Crit. Rev. Toxicol. 43: 711–752.
26 Collares, C.V., Evangelista, A.F., Xavier, D.J., Rassi, D.M., Arns, T., Foss-Freitas, M.C., Foss, M.C., Puthier, D., Sakamoto-Hojo, E.T., Passos, G.A., and Donadi, E.A. (2013). Identifying common and specific microRNAs expressed in peripheral blood mononuclear cell of type 1, type 2, and gestational diabetes mellitus patients. BMC Res. Notes 6: 491.
27 Correia, C.N., Nalpas, N.C., Mcloughlin, K.E., Browne, J.A., Gordon, S.V., Machugh, D.E., and Shaughnessy, R.G. (2017). Circulating microRNAs as potential biomarkers of infectious disease. Front Immunol. 8: 118.
28 Cory-Slechta, D.A. (2005). Studying toxicants as single chemicals: Does this strategy adequately identify neurotoxic risk? Neurotoxicology 26: 491–510.
29 Cubadda, F., Jackson, B.P., Cottingham, K.L., Van Horne, Y.O., and Kurzius-Spencer, M. (2017). Human exposure to dietary inorganic arsenic and other arsenic species: State of knowledge, gaps and uncertainties. Sci. Total Environ. 579: 1228–1239.
30 Cui, M., Wang, H., Yao, X., Zhang, D., Xie, Y., Cui, R., and Zhang, X. (2019). Circulating microRNAs in cancer: Potential and challenge. Front Genet. 10: 626.
31 de Araujo, M.L., Gomes, B.C., Devoz, P.P., Duarte, N.A.A., Ribeiro, D.L., De Araujo, A.L., Batista, B.L., Antunes, L.M.G., Barbosa, F., JR., Rodrigues, A.S., Rueff, J., and Barcelos, G.R.M. (2021). Association between miR-148a and DNA methylation profile in individuals exposed to lead (Pb). Front Genet. 12: 620744.
32 De Guire, V., Robitaille, R., Tetreault, N., Guerin, R., Menard, C., Bambace, N., and Sapieha, P. (2013). Circulating miRNAs as sensitive and specific biomarkers for the diagnosis and monitoring of human diseases: Promises and challenges. Clin. Biochem. 46: 846–860.
33 Deng, Q., Dai, X., Feng, W., Huang, S., Yuan, Y., Xiao, Y., Zhang, Z., Deng, N., Deng, H., Zhang, X., Kuang, D., Li, X., Zhang, W., Zhang, X., Guo, H., and Wu, T. (2019). Co-exposure to metals and polycyclic aromatic hydrocarbons, microRNA expression, and early health damage in coke oven workers. Environ. Int. 122: 369–380.
34 Ding, E., Guo, J., Bai, Y., Zhang, H., Liu, X., Cai, W., Zhong, L., and Zhu, B. (2017). MiR-92a and miR-486 are potential diagnostic biomarkers for mercury poisoning and jointly sustain NF-kappaB activity in mercury toxicity. Sci. Rep. 7: 15980.
35 Ding, E., Zhao, Q., Bai, Y., Xu, M., Pan, L., Liu, Q., Wang, B., Song, X., Wang, J., Chen, L., and Zhu, B. (2016). Plasma microRNAs expression profile in female workers occupationally exposed to mercury. J. Thorac. Dis. 8: 833–841.
36 Dioni, L., Sucato, S., Motta, V., Iodice, S., Angelici, L., Favero, C., Cavalleri, T., Vigna, L., Albetti, B., Fustinoni, S., Bertazzi, P., Pesatori, A., and Bollati, V. (2017). Urinary chromium is associated with changes in leukocyte miRNA expression