Biomolecules from Natural Sources. Группа авторов. Читать онлайн. Newlib. NEWLIB.NET

Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Техническая литература
Год издания: 0
isbn: 9781119769613
Скачать книгу
immunoglobulin. BMC Biotechnology 1: 5.

      40 Inaba, T., Tokumoto, Y., Miyazaki, Y., Inoue, N., Maseda, H., Nakajima-Kambe, T., Uchiyama, H., and Nomura, N. (2013). Analysis of genes for succinoyl trehalose lipid production and increasing production in Rhodococcus sp. strain SD-74. Applied and Environmental Microbiology 79: 7082–7890.

      41 Iqbal, S., Khalid, Z.M., and Malik, K.A. (1995). Enhanced biodegradation and emulsification of crude oil and hyperproduction of biosurfactants by a gamma ray induced mutant of Pseudomonas aeruginosa. Letters in Applied Microbiology 21: 176–179.

      42 Isoda, H., Kitamoto, D., Shinmoto, H., Matsumura, M., and Nakahara, T. (1997). Microbial extracellular glycolipid induction of differentiation and inhibition of the protein kinase C activity of human promyelocytic leukemia cell line HL60. Bioscience, Biotechnology, and Biochemistry 61 (4): 609–614.

      43 Isoda, H., Shinmoto, H., Matsumura, M., and Nakahara, T. (1996). Succinoyl trehalose lipid induced differentiation of human monocytoid leukemic cell line U937 into monocyte–macrophages. Cytotechnology 19: 79–88.

      44 Jain, N.K. and Roy, I. (2009). Effect of trehalose on protein structure. Protein Science 18 (1): 24–36.

      45 Janek, T., Krasowska, A., Czyznikowska, Z., and Łukaszewicz, M. (2018). Trehalose lipid biosurfactant reduces adhesion of microbial pathogens to polystyrene and silicone surfaces: an experimental and computational approach. Frontiers in Microbiology 9 2441

      46 Kadinov, B., Nikolova, B., Tsoneva, I., Semkova, S., Kabaivanova, L., and Dimitrova, D. (2020). Trehalose lipid biosurfactant reduced cancer cell viability but did not affect the isometric contraction of rat mesenteric arteries in vitro. International Journal Bioautomation 24 (1): 79–86.

      47 Kitamoto, D., Isoda, H., and Nakahara, T. (2002). Functions and potential applications of glycolipid biosurfactants. Journal of Bioscience and Bioengineering 94 (3): 187–201.

      48 Koch, A.K., Käppeli, O., Fiechter, A., and Reiser, J. (1991). Hydrocarbon assimilation and biosurfactant production in Pseudomonas aeruginosa mutants. Journal of Bacteriology 173: 4212–4219.

      49 Kretschmer, A., Bock, H., and Wagner, F. (1982). Chemical and physical characterization of interfacial-active lipids from Rhodococcus erythropolis grown on n-alkanes. Applied and Environmental Microbiology 44 (4): 864–870.

      50 Kügler, J. H. et al. (2014). Trehalose lipid biosurfactants produced by the actinomycetes Tsukamurella spumae and T. pseudospumae. Applied Microbiology and Biotechnology 98 (21): 8905–8915.

      51 Kumari, S., Sekar, K.V., Nagasathya, A., Palanivel, S., and Nambaru, S. (2010). Effective biosurfactants production by Pseudomonas aeruginosa and its efficacy on different oils. Journal of Advanced Laboratory Research in Biology 1 (1): 31–34.

      52 Kundu, D., Hazra, C., and Chaudhari, A. (2016a). Biodegradation of 2,6- dinitrotoluene and plant growth promoting traits by Rhodococcus pyridinivorans NT2: identification and toxicological analysis of metabolites and proteomic insights. Biocatalysis and Agricultural Biotechnology 8: 55–65.

      53 Kundu, D., Hazra, C., and Chaudhari, A. (2016b). Bioremediation potential of Rhodococcus pyridinivorans NT2 in nitrotoluene-contaminated soils: the effectiveness of natural attenuation, biostimulation and bioaugmentation approaches. Soil and Sediment Contamination: An International Journal 25: 637–651.

      54 Kundu, D., Hazra, C., Dandi, N., and Chaudhari, A. (2013). Biodegradation of 4- nitrotoluene with biosurfactant production by Rhodococcus pyridinivorans NT2: metabolic pathway, cell surface properties and toxicological characterization. Biodegradation 24: 775–793.

      55 Kuyukina, M.S. and Ivshina, I.B. (2010). Rhodococcus biosurfactants: biosynthesis, properties, and potential applications. In: Biology of Rhodococcus (ed. H. Alvarez), Microbiology Monographs, vol 16, 291–313. Springer.

      56 Kuyukina, M.S. and Ivshina, I.B. (2019). Production of trehalolipid biosurfactants by Rhodococcus. In: Biology of Rhodococcus (ed. H. Alvarez), Microbiology Monographs, vol 16, 271–298. Cham: Springer.

      57 Kuyukina, M.S., Ivshina, I.B., Baeva, T.A., Kochina, O.A., Gein, S.V., and Chereshnev, V.A. (2015). Trehalolipid biosurfactants from nonpathogenic Rhodococcus actinobacteria with diverse immunomodulatory activities. New Biotechnology 25; 32 (6): 559–568.

      58 Kuyukina, M.S., Ivshina, I.B., Gein, S.V., Baeva, T.A., and Chereshnev, V.A. (2007). In vitro immunomodalating acitivity of biosurfactant glycolipid complex from Rhodococcus rubber. Bulletin of Experimental Biology and Medicine 144 (3): 326–330.

      59 Kuyukina, M.S., Ivshina, I.B., Korshunova, I.O., Stukova, G.I., and Krivoruchko, A.V. (2016). Diverse effects of a biosurfactant from Rhodococcus ruber IEGM 231 on the adhesion of resting and growing bacteria to polystyrene. AMB Express 6 (14): 1–12.

      60 Kuyukina, M.S., Ivshina, I.B., Philp, J.C., Christofi, N., Dunbar, S.A., and Ritchkova, M.I. (2001). Recovery of Rhodococcus biosurfactants using methyl tertiary-butyl ether extraction. Journal of Microbiological Methods 46: 149–156.

      61 Kuyukina, M.S., Varushkina, A.M., and Ivshina, I.B. (2020). Effects of electroporation on antibiotic susceptibility and adhesive activity to n-hexadecane in Rhodococcus ruber IEGM 231. Applied Biochemistry and Microbiology 56: 729–735.

      62 Lang, S. and Philp, J.C. (1998). Surface-active lipids in rhodococci. Antonie van Leeuwenhoek 74 (1/3): 59–70.

      63 Lin, S.-C., Lin, K.-G., and Lin, Y.M. (1998). Enhanced biosurfactant production by a Bacillus licheniformis mutant. Enzyme and Microbial Technology 23: 267–273.

      64 Mclaughlin, C.A., Schwartzman, S.M., Horner, B.L. et al. (1980). Regression of tumors in guinea pigs after treatment with synthetic muramyl dipeptides and trehalose dimycolate. Science (80) 208 (4442): 415–416.

      65 Makkar, R.S., Cameotra, S.S., and Banat, I.M. (2011). Advances in utilization of renewable substrates for biosurfactant production. AMB Express 1 (1): 1–19.

      66 Marqués, A.M., Pinazo, M., Farfana, F.J., Aranda, J.A., Teruel, A., Ortiz, A., Manresa, A., and Espunya, M.J. (2009). The physicochemical properties and chemical composition of trehalose lipids produced by Rhodococcus erythropolis 51T7. Chemistry and Physics of Lipids 158: 110–117.

      67 Mata-Sandoval, J.C., Karns, J., and Torrents, A. (1999). High-performance liquid chromatography method for the characterization of rhamnolipid mixtures produced by Pseudomonas aeruginosa UG2 on corn oil. Journal of Chromatography A 864: 211–220.

      68 Matsumoto, Y., Cao, E., and Ueoka, R. (2013). Novel liposomes composed of dimyristoylphosphatidylcholine and trehalose surfactants inhibit the growth of tumor cells along with apoptosis. Biological & Pharmaceutical Bulletin 36 (8): 1258–1262.

      69 Matsumoto, Y., Kuwabara, K., Ichihara, H., and Kuwano, M. (2016). Therapeutic effects of trehalose liposomes against lymphoblastic leukemia leading to apoptosis in vitro and in vivo. Bioorganic & Medicinal Chemistry Letters 15, 26 (2): 301–305.

      70 Mnif, I., Ghribi, D. (2015). Microbial derived surface active compounds: properties and screening concept. World Journal of Microbiology and Biotechnology 31 (7): 1001–1020.

      71 Mnif, I. and Ghribia, D. (2016). Glycolipid biosurfactants: main properties and potential applications in agriculture and food industry. Journal of the Science of Food and Agriculture 96 (13): 4310–4320.

      72 Morikawa, M., Hirata, Y., and Imanaka, T. (2000). A study on the structure-function relationship of lipopeptide biosurfactants. Biochimica et Biophysica Acta 1488: 211–218.

      73 Mujumdar, S., Joshi, P., and Karve, N. (2019). Production, characterization, and applications of bioemulsifiers (BE) and biosurfactants (BS) produced by Acinetobacter spp.: a review. Journal of Basic Microbiology 59 (3): 277–287.

      74 Mukherjee, S., Das, P., and Sen, R. (2006). Towards commercial production of microbial surfactants. Trends in Biotechnology 24 (11): 509–514.

      75 Mulligan, C.N., Cooper, D.G., and Neufeld, R.J. (1984). Selection of microbes producing biosurfactants in media without hydrocarbons. Journal of Fermentation Technology 62: 311–314.

      76 Mutalik, S.R., Vaidya, B.K., Joshi, R.M., Desai, K.M., and Nene, S.N. (2008).