12.1 RNN-ridge algorithm.Table 12.2 Interpretation of the confusion matrix.Table 12.3 Confusion matrix for Titanic data sets using RLR...Table 12.4 Number of correct predictions (percentages) and AUROC of LNN-ridge.Table 12.5 Input (
xij), output (
yi) and predicted values
p~(
xi) for the image classification problem.Table 12.6 Confusion matrices for RNNs and LNNs (test size = 35).Table 12.7 Accuracy metrics for RNNs vs. LNNs (test size = 35).Table 12.8 Train/test set accuracy for LNNs.
F1 score is associated with the test set.Table 12.9 Train/test set accuracy for RNNs.
F1 score is associated with the test set.Table 12.10 Confusion matrices for RNNs and LNNs (test size = 700).Table 12.11 Accuracy metrics for RNNs vs. LNNs (test size = 700).Table 12.12 MNIST training with 0 outliers.Table 12.13 MNIST training with 90 outliers.Table 12.14 MNIST training with 180 outliers.Table 12.15 MNIST training with 270 outliers.Table 12.16 Table of responses and probability outputs.
Guide
1
Cover
2
Title page
3
Copyright
4
Dedication
5
List of Figures
6 Table of Contents
7
List of Figures
8
List of Tables
9
Foreword
10
Preface
11
Begin Reading
12
Bibliography
13
Author Index
14
Subject Index
15
End User License Agreement
Pages
1
i
2
ii
3
iii
4
iv
5
v
6
vi
7
vii
8 viii
9
ix
10
x
11
xi
12
xii
13
xiii
14
xiv
15
xv
16
xvi
17
xvii
18
xviii
19
xix
20
xx
21
xxi
22
xxii
23
xxiii
24
xxiv
25
xxv
26
xxvi
27
xxvii
28
xxviii
29
xxix
30
xxx
31
xxxi
32
1
33
2
34
3
35
4
36
5
37
6
38
7
39
8
40
9
41