72 [72] Vlasova TI, Stratton SL, Wells AM, Mock NI, Mock DM. Biotin deficiency reduces expression of SLC19A3, a potential biotin transporter, in leukocytes from human blood. J Nutr 2005; 135(1):42–47.
73 [73] Kono S, Miyajima H, Yoshida K, Togawa A, Shirakawa K, Suzuki H. Mutations in a thiamine‐transporter gene and Wernicke's‐like encephalopathy. N Engl J Med 2009; 360(17):1792–1794.
74 [74] Adamsen D, Ramaekers V, Ho HT, Britschgi C, Rüfenacht V, Meili D, Bobrowski E, Philippe P, Nava C, Van Maldergem L, Bruggmann R, Walitza S, Wang J, Grünblatt E, Thöny B. Autism spectrum disorder associated with low serotonin in CSF and mutations in the SLC29A4 plasma membrane monoamine transporter (PMAT) gene. Mol Autism 2014; 5:43.
75 [75] Dawed AY, Zhou K, van Leeuwen N, Mahajan A, Robertson N, Koivula R, Elders PJM, Rauh SP, Jones AG, Holl RW, Stingl JC, Franks PW, Mccarthy MI, ‘T Hart LM, Pearson ER, Consortium ID. Variation in the plasma membrane monoamine transporter (PMAT) (Encoded by SLC29A4) and organic cation transporter 1 (OCT1) (Encoded by SLC22A1) and gastrointestinal intolerance to metformin in type 2 diabetes: an IMI DIRECT study. Diabetes Care 2019; 42(6):1027–1033.
76 [76] Enomoto A, Wempe MF, Tsuchida H, Shin HJ, Cha SH, Anzai N, Goto A, Sakamoto A, Niwa T, Kanai Y, Anders MW, Endou H. Molecular identification of a novel carnitine transporter specific to human testis. Insights into the mechanism of carnitine recognition. J Biol Chem 2002; 277(39):36262–36271.
77 [77] Eraly SA, Nigam SK. Novel human cDNAs homologous to Drosophila Orct and mammalian carnitine transporters. Biochem Biophys Res Commun 2002; 297(5):1159–1166.
78 [78] Zhu C, Nigam KB, Date RC, Bush KT, Springer SA, Saier MH, Wu W, Nigam SK. Evolutionary analysis and classification of OATs, OCTs, OCTNs, and other SLC22 transporters: structure‐function implications and analysis of sequence motifs. PLoS One 2015; 10(11):e0140569.
79 [79] Yee SW, Buitrago D, Stecula A, Ngo HX, Chien HC, Zou L, Koleske ML, Giacomini KM. Deorphaning a solute carrier 22 family member, SLC22A15, through functional genomic studies. FASEB J 2020; 34(12):15734–15752.
80 [80] Tamai I, Yabuuchi H, Nezu J, Sai Y, Oku A, Shimane M, Tsuji A. Cloning and characterization of a novel human pH‐dependent organic cation transporter, OCTN1. FEBS Lett 1997; 419(1):107–111.
81 [81] Urban TJ, Yang C, Lagpacan LL, Brown C, Castro RA, Taylor TR, Huang CC, Stryke D, Johns SJ, Kawamoto M, Carlson EJ, Ferrin TE, Burchard EG, Giacomini KM. Functional effects of protein sequence polymorphisms in the organic cation/ergothioneine transporter OCTN1 (SLC22A4). Pharmacogenet Genomics 2007; 17(9):773–782.
82 [82] Eder K, Ringseis R. The role of peroxisome proliferator‐activated receptor alpha in transcriptional regulation of novel organic cation transporters. Eur J Pharmacol 2010; 628(1–3):1–5.
83 [83] Kato Y, Sai Y, Yoshida K, Watanabe C, Hirata T, Tsuji A. PDZK1 directly regulates the function of organic cation/carnitine transporter OCTN2. Mol Pharmacol 2005; 67(3):734–743.
84 [84] Kato Y, Kubo Y, Iwata D, Kato S, Sudo T, Sugiura T, Kagaya T, Wakayama T, Hirayama A, Sugimoto M, Sugihara K, Kaneko S, Soga T, Asano M, Tomita M, Matsui T, Wada M, Tsuji A. Gene knockout and metabolome analysis of carnitine/organic cation transporter OCTN1. Pharm Res 2010; 27(5):832–840.
85 [85] Shinozaki Y, Furuichi K, Toyama T, Kitajima S, Hara A, Iwata Y, Sakai N, Shimizu M, Kaneko S, Isozumi N, Nagamori S, Kanai Y, Sugiura T, Kato Y, Wada, T. Impairment of the carnitine/organic cation transporter 1‐ergothioneine axis is mediated by intestinal transporter dysfunction in chronic kidney disease. Kidney Int 2017; 92(6):1356–1369.
86 [86] Astle WJ, Elding H, Jiang T, Allen D, Ruklisa D, Mann AL, Mead D, Bouman H, Riveros‐Mckay F, Kostadima MA, Lambourne JJ, Sivapalaratnam S, Downes K, Kundu K, Bomba L, Berentsen K, Bradley JR, Daugherty LC, Delaneau O, Freson K, Garner SF, Grassi L, Guerrero J, Haimel M, Janssen‐Megens EM, Kaan A, Kamat M, Kim B, Mandoli A, Marchini J, Martens JHA, Meacham S, Megy K, O’Connell J, Petersen R, Sharifi N, Sheard SM, Staley JR, Tuna S, Van Der Ent M, Walter K, Wang SY, Wheeler E, Wilder SP, Iotchkova V, Moore C, Sambrook J, Stunnenberg HG, Di Angelantonio E, Kaptoge S, Kuijpers TW, Carrillo‐De‐Santa‐Pau E, Juan D, Rico D, Valencia A, Chen L, Ge B, Vasquez L, Kwan T, Garrido‐Martín D, Watt S, Yang Y, Guigo R, Beck S, Paul DS, Pastinen T, Bujold D, Bourque G, Frontini M, Danesh J, Roberts DJ, Ouwehand WH, Butterworth AS, Soranzo N. The allelic landscape of human blood cell trait variation and links to common complex disease. Cell 2016; 167(5):1415–1429.e19.
87 [87] Draisma HHM, Pool R, Kobl M, Jansen R, Peters en AK, Vaarhorst AAM, Yet I, Haller T, Demirkan A, Esko T, Zhu G, Böhringer S, Beekman M, Van Klinken JB, Römisch‐Margl W, Prehn C, Adamski J, De Craen AJM, Van Leeuwen EM, Amin N, Dharuri H, Westra HJ, Franke L, De Geus EJC, Hottenga JJ, Willemsen G, Henders AK, Montgomery GW, Nyholt DR, Whitfield JB, Penninx BW, Spector TD, Metspalu A, Slagboom PE, Van Dijk KW, ‘T Hoen PAC, Strauch K, Martin NG, Van Ommen GB, Illig T, Bell JT, Mangino M, Suhre K, Mccarthy MI, Gieger C, Isaacs A, Van Duijn CM, Boomsma DI. Genome‐wide association study identifies novel genetic variants contributing to variation in blood metabolite levels. Nat Commun 2015; 6:7208.
88 [88] Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, Collins RL, Laricchia KM, Ganna A, Birnbaum DP, Gauthier LD, Brand H, Solomonson M, Watts NA, Rhodes D, Singer‐Berk M, England EM, Seaby EG, Kosmicki JA, Walters RK, Tashman K, Farjoun Y, Banks E, Poterba T, Wang A, Seed C, Whiffin N, Chong JX, Samocha KE, Pierce‐Hoffman E, Zappala Z, O’Donnell‐Luria AH, Minikel EV, Weisburd B, Lek M, Ware JS, Vittal C, Armean IM, Bergelson L, Cibulskis K, Connolly KM, Covarrubias M, Donnelly S, Ferriera S, Gabriel S, Gentry J, Gupta N, Jeandet T, Kaplan D, Llanwarne C, Munshi R, Novod S, Petrillo N, Roazen D, Ruano‐Rubio V, Saltzman A, Schleicher M, Soto J, Tibbetts K, Tolonen C, Wade G, Talkowski ME, Neale BM, Daly MJ, Macarthur DG, Consortium GAD. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020; 581(7809):434–443.
89 [89] Urban TJ, Brown C, Castro RA, Shah N, Mercer R, Huang Y, Brett CM, Burchard EG, Giacomini KM. Effects of genetic variation in the novel organic cation transporter, OCTN1, on the renal clearance of gabapentin. Clin Pharmacol Ther 2008; 83(3):416–421.
90 [90] Kou L, Sun R, Ganapathy V, Yao Q, Chen R. Recent advances in drug delivery via the organic cation/carnitine transporter 2 (OCTN2/SLC22A5). Expert Opin Ther Targets 2018; 22(8):715–726.
91 [91] Lancaster CS, Hu C, Franke RM, Filipski KK, Orwick SJ, Chen Z, Zuo Z, Loos WJ, Sparreboom A. Zuo Z, Loos WJ, Sparreboom A. Cisplatin‐induced downregulation of OCTN2 affects carnitine wasting. Clin Cancer Res 2010; 16(19):4789–4799.
92 [92] D'Argenio G, Petillo O, Margarucci S, Torpedine A, Calarco A, Koverech A, Boccia A, Paolella G, Peluso G. Colon OCTN2 gene expression is up‐regulated by peroxisome proliferator‐activated receptor gamma in humans and mice and contributes to local and systemic carnitine homeostasis. J Biol Chem 2010; 285(35):27078–27087.
93 [93] Li P, Wang Y, Luo J, Zeng Q, Wang M, Bai M, Zhou H, Wang J, Jiang H. Downregulation of OCTN2 by cytokines plays an important role in the progression of inflammatory bowel disease. Biochem Pharmacol 2020; 178:114115.
94 [94] Koizumi T, Nikaido H, Hayakawa J, Nonomura A, Yoneda T. Infantile disease with microvesicular fatty infiltration of viscera spontaneously occurring in the C3H‐H‐2(0) strain of mouse with similarities to Reye's syndrome. Lab Anim 1988; 22(1):83–87.
95 [95] Yokogawa K, Higashi Y, Tamai I, Nomura M, Hashimoto N, Nikaido H, Hayakawa J, Miyamoto K, Tsuji A. Decreased tissue distribution of L‐carnitine in juvenile visceral steatosis mice. J Pharmacol Exp Ther 1999; 289(1):224–230.
96 [96] Shekhawat PS, Srinivas SR, Matern D, Bennett MJ, Boriack R, George V, Xu H, Prasad PD, Roon P, Ganapathy V. Spontaneous development of intestinal and colonic atrophy and inflammation in the carnitine‐deficient jvs (OCTN2(−/−)) mice. Mol Genet Metab 2007; 92(4):315–324.
97 [97] Longo N. Primary carnitine deficiency and newborn screening for disorders of the