81 81 Aldred MP, Li C, Zhang G‐F, Gong W‐L, Li ADQ, Dai Y, et al. (2012). Fluorescence quenching and enhancement of vitrifiable oligofluorenes end‐capped with tetraphenylethene. J. Mater. Chem. 22(15): 7515–28.
82 82 Minei P, Ahmad M, Barone V, Brancato G, Passaglia E, Bottari G, et al. (2016). Vapochromic behavior of polycarbonate films doped with a luminescent molecular rotor. Polym. Adv. Technol. 27(4): 429–35.
83 83 Minei P, Koenig M, Battisti A, Ahmad M, Barone V, Torres T, et al. (2014). Reversible vapochromic response of polymer films doped with a highly emissive molecular rotor. J. Mater. Chem. C 2(43): 9224–32.
84 84 Iasilli G, Martini F, Minei P, Ruggeri G, Pucci A (2017). Vapochromic features of new luminogens based on julolidine‐containing styrene copolymers. Faraday Disc. 196: 113–29.
85 85 Borelli M, Iasilli G, Minei P, Pucci A (2017). Fluorescent polystyrene films for the detection of volatile organic compounds using the twisted intramolecular charge transfer mechanism. Molecules 22(8): 1306.
86 86 Guidugli N, Mori R, Bellina F, Tang BZ, Pucci A (2019). Aggregation‐induced emission: new emerging fluorophores for environmental sensing. In: Tang Y, Tang BZ, editors. Principles and Applications of Aggregation‐Induced Emission. Cham: Springer International Publishing. p. 335–49.
87 87 Cheng Y, Wang J, Qiu Z, Zheng X, Leung NLC, Lam JWY, et al. (2017). Multiscale humidity visualization by environmentally sensitive fluorescent molecular rotors. Adv. Mater. 29(46): 1703900.
88 88 Iasilli G, Francischello R, Lova P, Silvano S, Surace A, Pesce G, et al. (2019). Luminescent solar concentrators: boosted optical efficiency by polymer dielectric mirrors. Mater. Chem. Front. 3(3): 429–36.
89 89 Geervliet TA, Gavrila I, Iasilli G, Picchioni F, Pucci A (2019). Luminescent solar concentrators based on renewable polyester matrices. Chem‐Asian J. 14(6): 877–83.
90 90 Papucci C, Geervliet TA, Franchi D, Bettucci O, Mordini A, Reginato G, et al. (2018). Green/yellow‐emitting conjugated heterocyclic fluorophores for luminescent solar concentrators. Eur. J. Org. Chem. 2018(20): 2657–66.
91 91 Gianfaldoni F, De Nisi F, Iasilli G, Panniello A, Fanizza E, Striccoli M, et al. (2017). A push–pull silafluorene fluorophore for highly efficient luminescent solar concentrators. RSC Adv. 7(59): 37302–9.
92 92 Lucarelli J, Lessi M, Manzini C, Minei P, Bellina F, Pucci A (2016). N‐Alkyl diketopyrrolopyrrole‐based fluorophores for luminescent solar concentrators: effect of the alkyl chain on dye efficiency. Dye. Pigm. 135: 154–62.
93 93 Carlotti M, Fanizza E, Panniello A, Pucci A (2015). A fast and effective procedure for the optical efficiency determination of luminescent solar concentrators. Sol. Ener. 119: 452–60.
94 94 Swanson RM (2000). The promise of concentrators. Progr. Photovolt. Res. Appl. 8(1): 93–111.
95 95 Debije M (2015). Renewable energy better luminescent solar panels in prospect. Nature (Lond. UK) 519(7543): 298–9.
96 96 Debije MG, Verbunt PPC (2012). Thirty years of luminescent solar concentrator research: solar energy for the built environment. Adv. Ener. Mater. 2(1): 12–35.
97 97 Garwin RL (1960). The collection of light from scintillation counters. Rev. Sci. Instrum. 31(9): 1010–1.
98 98 Weber WH, Lambe J (1976). Luminescent greenhouse collector for solar radiation. Appl. Opt. 15(10): 2299–300.
99 99 Goetzberger A, Greube W (1977). Solar energy conversion with fluorescent collectors. Appl. Phys. 14(2): 123–39.
100 100 Krumer Z, van Sark WGJHM, Schropp REI, Donega CdM (2017). Compensation of self‐absorption losses in luminescent solar concentrators by increasing luminophore concentration. Sol. Ener. Mater. Sol. Cell. 167: 133–9.
101 101 Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ (2015). Aggregation‐induced emission: together we shine, united we soar! Chem. Rev. (Wash. USA) 115(21): 11718–940.
102 102 De Nisi F, Francischello R, Battisti A, Panniello A, Fanizza E, Striccoli M, et al. (2017). Red‐emitting AIEgen for luminescent solar concentrators. Mater. Chem. Front. 1(7): 1406–12.
103 103 Liu B, Pucci A, Baumgartner T (2017). Aggregation induced emission: a land of opportunities. Mater. Chem. Front. 1(9): 1689–90.
104 104 Kang M, Gu X, Kwok RTK, Leung CWT, Lam JWY, Li F, et al. (2016). A near‐infrared AIEgen for specific imaging of lipid droplets. Chem. Commun. 52(35): 5957–60.
105 105 Banal JL, White JM, Ghiggino KP, Wong WWH (2014). Concentrating aggregation‐induced fluorescence in planar waveguides: a proof‐of‐principle. Sci. Rep. 4: 4635/1–/5.
106 106 Banal JL, Ghiggino KP, Wong WWH (2014). Efficient light harvesting of a luminescent solar concentrator using excitation energy transfer from an aggregation‐induced emitter. Phys. Chem. Chem. Phys. 16(46): 25358–63.
107 107 Banal JL, Zhang B, Jones DJ, Ghiggino KP, Wong WWH (2017). Emissive molecular aggregates and energy migration in luminescent solar concentrators. Acc. Chem. Res. 50(1): 49–57.
108 108 Zhang B, Banal JL, Jones DJ, Tang BZ, Ghiggino KP, Wong WWH (2018). Aggregation‐induced emission‐mediated spectral downconversion in luminescent solar concentrators. Mater. Chem. Front. 2(3): 615–9.
109 109 Flores Daorta S, Proto A, Fusco R, Claudio Andreani L, Liscidini M (2014). Cascade luminescent solar concentrators. Appl. Phys. Lett. 104(15): 153901.
110 110 Altan Bozdemir O, Erbas‐Cakmak S, Ekiz OO, Dana A, Akkaya EU (2011). Towards unimolecular luminescent solar concentrators: BODIPY‐based dendritic energy‐transfer cascade with panchromatic absorption and monochromatized emission. Angew. Chem. Int. Ed. 50(46): 10907–12.
111 111 Currie MJ, Mapel JK, Heidel TD, Goffri S, Baldo MA (2008). High‐efficiency organic solar concentrators for photovoltaics. Science 321(5886): 226–8.
112 112 Carlotti M, Ruggeri G, Bellina F, Pucci A (2016). Enhancing optical efficiency of thin‐film luminescent solar concentrators by combining energy transfer and stacked design. J. Lumin. 171: 215–20.
113 113 Mori R, Iasilli G, Lessi M, Munoz‐Garcia AB, Pavone M, Bellina F, et al. (2018). Luminescent solar concentrators based on PMMA films obtained from a red‐emitting ATRP initiator. Polym. Chem. 9(10): 1168–77.
114 114 Liu B, Zhang R (2017). Aggregation induced emission: concluding remarks. Faraday Discus. 196(0): 461–72.
4 Aggregation‐induced Electrochemiluminescence
Serena Carrara1,2
1 Department of Chemistry & Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
2 Aix Marseille Université, CNRS, CINAM, Marseille, France
Electrogenerated chemiluminescence (ECL) is the light generated and controlled by the application of a potential at an electrode surface through an electron transfer reaction.
Recently, the enthusiastic phenomenon of aggregation‐induced electrogenerated chemiluminescence (AI‐ECL) has come to light, examining a class of supramolecular assemblies and nanostructure that can emit stronger ECL than the corresponding unassembled system can do. This new concept brings together electrochemical and photophysical properties of aggregates and new fascinating and unexplored mechanisms for its generation.
The findings can lead to a new generation of bright emitters that can be used as ECL labels in immunoassays and different biosensors, where the change in the packing of the aggregated systems (ASs) can be monitored by an off/on ECL signal or even different colors.
The following chapter outlines the general principle and mechanisms of AI‐ECL together with the new emerging emitters in the field of metal complexes, organic molecules, and materials.