20 20 Han, T., Zhang, Y. J., Feng, X. et al. (2013) Reversible and hydrogen bonding‐assisted piezochromic luminescence for solid‐state tetraaryl‐buta‐1,3‐diene. Chemical Communications 49 (63): 7049–7051.
21 21 Yang, Z., Qin, W., Leung, N. L. C. et al. (2016) A mechanistic study of AIE processes of TPE luminogens: intramolecular rotation vs. configurational isomerization. Journal of Materials Chemistry C 2016, 4 (1): 99–107.
22 22 Xiong, J. B., Yuan, Y. X., Wang, L. et al. (2018) Evidence for aggregation‐induced emission from free rotation restriction of double bond at excited state. Organic Letters 20 (2): 373–376.
23 23 Qu, D., Yu, T., Yang, Z. et al. Combined aggregation induced emission (AIE), photochromism and photoresponsive wettability in simple dichloro‐substituted triphenylethylene derivatives. Chemical Science 7 (8): 5302–5306.
24 24 Li, Z., Dong, Y. Q., Lam, J. W. Y. et al. (2009) Functionalized siloles: versatile synthesis, aggregation‐induced emission, and sensory and device applications. Advanced Functional Materials 19 (6): 905–917.
25 25 Nie, H., Chen, B., Zeng, J. et al. (2018) Excellent n‐type light emitters based on AIE‐active silole derivatives for efficient simplified organic light‐emitting diodes. Journal of Materials Chemistry C 6 (14): 3690–3698.
26 26 Liu, G., Chen, D., Kong, L. et al. (2015) Red fluorescent luminogen from pyrrole derivatives with aggregation‐enhanced emission for cell membrane imaging. Chemical Communications 51 (40): 8555–8558.
27 27 Li, K., Liu, Y., Li, Y. et al. (2017) 2,5‐bis(4‐alkoxycarbonylphenyl)‐1,4‐diaryl‐1,4‐dihydropyrrolo[3,2‐b]pyrrole (AAPP) AIEgens: tunable RIR and TICT characteristics and their multifunctional applications. Chemical Science 8 (10): 7528–7267.
28 28 Nie, H., Hu, K., Cai, Y. et al. (2017) Tetraphenylfuran: aggregation‐induced emission or aggregation‐caused quenching? Materials Chemistry Frontiers 1 (6): 1125–1129.
29 29 Guo, J., Hu, S., Luo, W. et al. (2017) A novel aggregation‐induced emission platform from 2,3‐diphenylbenzo[b]thiophene S,S‐dioxide. Chemical Communications 53 (9): 1463–1466.
30 30 Gao, Y., Feng. G., Jiang, T. et al. (2015) Biocompatible nanoparticles based on diketo‐pyrrolo‐pyrrole (DPP) with aggregation‐induced red/NIR emission for in vivo two‐photon fluorescence imaging Advanced Functional Materials 25 (19): 2857–2866.
31 31 Zhao, Z., He, B. and Tang, B. Z. (2015) Aggregation‐induced emission of siloles. Chemical Science 6 (10): 5347–5365.
32 32 Feng, X., Tong, B., Shen, J. et al. (2010) Aggregation‐induced emission enhancement of aryl‐substituted pyrrole derivatives. The Journal of Physical Chemistry B 114 (50): 16731–16736.
33 33 Chen, M., Li, L., Nie, H. et al. (2015) Tetraphenylpyrazine‐based AIEgens: facile preparation and tunable light emission. Chemical Science 6 (3): 1932–1937.
34 34 Chen, M., Li, L., Wu, H. et al. (2018) Unveiling the different emission behavior of polytriazoles constructed from pyrazine‐based AIE monomers by click polymerization. ACS Applied Materials & Interfaces 10 (15): 12181–12188.
35 35 Zhang, J., Liu, Q., Wu, W. et al. (2019) Real‐time monitoring of hierarchical self‐assembly and induction of circularly polarized luminescence from achiral luminogens. ACS Nano 13 (3): 3618–3628.
36 36 Pan, L., Luo, W., Chen, M. et al. (2016) Tetraphenylpyrazine‐based luminogens with aggregation‐enhanced emission characteristics: preparation and property. Chinese Journal of Organic Chemistry 36 (6): 1316–1324.
37 37 Han, M., Chen, M., Ebendorff‐Heidepriem, H. et al. (2016) An optical fibre sensor for remotely detecting water traces in organic solvents. RSC Advances 6 (85): 82186–82190.
38 38 Chen, M., Hu, X., Liu, J. et al. (2018) Rational design of red AIEgens with a new core structure from non‐emissive heteroaromatics. Chemical Science 9 (40): 7829–7834.
39 39 Chen, M., Li, L., Nie, H. et al. (2015) N‐type pyrazine and triazole‐based luminogens with aggregation‐enhanced emission characteristics. Chemical Communications 51 (53): 10710–10713.
40 40 Laurent, A. (1845) Ueber die Einwirkung von Jod auf xanthogensaures Kali. Journal für praktische Chemie 36 (1): 352–362.
41 41 Erdmann, J. (1865) Ann. 135: 181.
42 42 Japp, F. R. and Wilson, W. H. (1886) On ammonia‐derivatives of benzoin. Journal of the Chemical Society 49: 825–831.
43 43 Davidson, D., Weiss, M. and Jelling, M. (1937) The action of ammonia on benzoin. The Journal of Organic Chemistry 2 (4): 328–334.
44 44 Dong, Y., Lam, J. W. Y., Qin, A. et al. (2007) Aggregation‐induced emissions of tetraphenylethene derivatives and their utilities as chemical vapor sensors and in organic light‐emitting diodes. Applied Physical Letters 91 (1): 011111.
45 45 Tamaddon, F. and Tafti, D. A. (2016) SnCl2·H2O‐catalyzed solvent‐free synthesis of α‐amino ketones and tetrasubstituted pyrazines. Synlett 27 (15): 2217–2220.
46 46 Tamaddon, F., Tafti, D. A. and Pooramini, F. (2016) An improved synthesis of multi‐substituted pyrazines under calalyst‐ and solvent‐free conditions. Synthesis 48 (23): 4295–4299.
47 47 Khafizova, L. O., Shaibakova, M. G. and Dzhemilev, U. M. (2018) A new one‐pot synthesis of tetrasubstituted pyrazines by the Ti‐catalyzed reaction of aromatic and benzyl‐substituted nitriles with EtAlCl2. Chemistryselect 3 (41): 11451–11453.
48 48 Ganji, P. and Leeuwen, P. W. N. M. van (2017) Phosphine supported ruthenium nanoparticle catalyzed synthesis of substituted pyrazines and imidazoles from α‐diketones. The Journal of Organic Chemistry 82 (3): 1768–1774.
49 49 Petrosyan, A., Ehlers, P., Reimann, S. et al. (2015) Synthesis of tetraaryl‐ and tetraalkenylpyrazines by Suzuki–Miyaura reactions of tetrachloropyrazine. Tetrahedron 71 (38): 6803–6812.
50 50 Chen, M., Nie, H., Song, B. et al. (2016) Triphenylamine‐functionalized tetraphenylpyrazine: facile preparation and multifaceted functionalities. Journal of Materials Chemistry C 4 (14): 2901–2908.
51 51 Wu, H., Luo, J., Xu, Z. et al. (2020) Uncommon intramolecular charge transfer effect and its potential application in OLED emitters. Chemical Research in Chinese Universities 36 (1): 61–67.
52 52 Wu, H., Pan, Y., Zeng, J. et al. (2019) Novel strategy for constructing high efficiency OLED emitters with excited state quinone‐conformation induced planarization process. Advanced Optical Materials 7 (18): 1900283.
53 53 Chen, Y., Zhu, C., Yang, Z. et al. (2013) A ratiometric fluorescent probe for rapid detection of hydrogen sulfide in mitochondria. Angewandte Chemie International Edition 52 (6): 1688–1691.
54 54 Chen, M., Chen, R., Shi, Y. et al. (2018) Malonitrile‐functionalized tetraphenylpyrazine: aggregation‐induced emission, ratiometric detection of hydrogen sulfide, and mechanochromism. Advanced Functional Materials 28 (6): 1704689.
55 55 Chen, M., Liu, J., Liu, F. et al. (2019) Tailoring the molecular properties with isomerism effect of AIEgens. Advanced Functional Materials 29 (37): 1903834.
56 56 Zhang, G. and Mastalerz, M. (2014) Organic cage compounds‐from shape‐persistency to function. Chemical Society Reviews 43 (6): 1934–1947.
57 57 Feng, H, Zheng, X. Gu, X. et al. (2018) White‐light emission of a binary light‐harvesting platform based on an amphiphilic organic cage. Chemistry of Materials 30 (4): 1285–1290.
58 58 Yaghi, O. M., Li, G. and Li, H. (1995) Selective binding and removal of guests in a microporous metal–organic framework. Nature 378: 703–706.
59 59 Li, Q., Ma, Z., Zhang, W. et al. (2016) AIE‐active tetraphenylethene functionalized metal–organic framework for selective detection of nitroaromatic explosives and organic photocatalysis. Chemical Communications 52 (75): 11284–11287.
60 60