18 Crockford, P.W., Kunzmann, M., Bekker, A., et al. (2019). Claypool continued: extending the isotopic record of sedimentary sulfate. Chemical Geology 513: 200–225.
19 Cypionka, H., Smock, A.M. and Böttcher, M.E. (1998). A combined pathway of sulfur compound disproportionation in Desulfovibrio desulfuricans. FEMS Microbiology Letters 166: 181–186.
20 Detmers, J., Brüchert, V., Habicht, K.S. et al. (2001). Diversity of sulfur isotope fractionations by sulfate‐reducing prokaryotes. Applied and Environmental Microbiology 67: 888–894.
21 Farquhar, J., Bao, H.M. and Thiemens, M. (2000). Atmospheric influence of Earth’s earliest sulfur cycle. Science 289: 756–759.
22 Fichtner, V., Strauss, H., Immenhauser, A. et al. (2017). Diagenesis of carbonate associated sulfate. Chemical Geology 463: 61–75.
23 Fike, D.A., Finke, N., Zha, J. et al. (2009). The effect of sulfate concentration on (sub)millimeter‐scale sulfide δ34S in hypersaline cyanobacterial mats over the diurnal cycle. Geochimica et Cosmochimica Acta 73: 6187–6204.
24 Filley, T.R., Freeman, K.H., Wilkin, R.T. et al. (2002). Biogeochemical controls on reaction of sedimentary organic matter and aqueous sulfides in Holocene sediments of Mud Lake, Florida. Geochimica et Cosmochimica Acta 66: 937–954.
25 Goldhaber, M.B. (2003). Sulfur‐rich sediments. In: Sediments, Diagenesis and Sedimentary Rocks (ed F.T. Mackenzie), 257–288. Elsevier Ltd.
26 Goodfellow, W.D. and Jonasson, I.R. (1984). Ocean stagnation and ventilation defined by 34S secular trends in pyrite and barite, Selwyn basin, Yukon. Geology 12: 583–586.
27 Guo, Q.J., Strauss, H., Kaufman, A.J. et al., (2009). Reconstructing Earth’s surface oxidation across the Archean–Proterozoic transition. Geology 37: 399–402.
28 Habicht, K.S., Canfield, D.E. and Rethmeier, J. (1998). Sulfur isotope fractionation during bacterial reduction and disproportionation of thiosulfate and sulfite. Geochimica et Cosmochimica Acta 62: 2585–2595.
29 Halevy, I., Peters, S.E., Fischer, W.W. (2012). Sulfate burial constraints on the Phanerozoic sulfur cycle. Science 337: 331–334.
30 Hartgers, W.A., Lopez, J.F., Sinnighe‐Damsté, J.S. et al. (1997). Sulfur‐binding in recent environments: II. Speciation of sulfur and iron and implications for the occurrence of organo‐sulfur compounds. Geochimica et Cosmochimica Acta 61: 4769–4788.
31 Hartmann, M. and Nielsen, H. (1969). δ34S‐Werte in rezenten Meeressedimenten und ihre Deutung am Beispiel einiger Sedimentprofile aus der westlichen Ostsee. Geologische Rundschau 58: 621–655.
32 Hayes, J.M., Lambert, I.B. and Strauss, H. (1992). The sulfur‐isotopic record. In: The Proterozoic Biosphere: A Multidisciplinary Study (eds. J.W. Schopf and C. Klein), 129–132. Cambridge: Cambridge University Press.
33 Hennecke, E., Luther, G.W., de Lange, G.J. et al. (1997). Sulphur speciation in anoxic hypersaline sediments from the eastern Mediterranean Sea. Geochimica et Cosmochimica Acta 61, 307–321.
34 Holland, H.D. (1984). The Chemical Evolution of the Atmosphere and Oceans. Princeton, NJ: Princeton University Press.
35 Holland, H.D. (2006). The oxygenation of the atmosphere and oceans. Philosophical Transactions of the Royal Society Series B 361: 904–916.
36 Holser, W.T. and Kaplan, I.R. (1966). Isotope geochemistry of sedimentary sulfates. Chemical Geology 1: 93–35.
37 Holser, W.T., Schidlowski, M., Mackenzie, F.T. et al. (1988). Geochemical cycles of carbon and sulfur. In: Chemical Cycles in the Evolution of the Earth (eds. C.B. Gregor, R.M. Garrels, F.T. MacKenzie, et al.), 105–173. New York: Wiley.
38 Hulston, J.R. and Thode, H.G. (1965). Variations in the S33, S34 and S36 contents of meteorites and their relation to chemical and nuclear effects. Journal of Geophysical Research 70: 3475–3484.
39 Jørgensen, B.B. (1982). Mineralization of organic matter in the sea bed: the role of sulfate reduction. Nature 296, 643–645.
40 Jørgensen, B.B. (1990). A thiosulfate shunt in the sulfur cycle of marine sediments. Science 249: 152–154.
41 Jørgensen, B.B., Böttcher, M.E., Lüschen, H. et al. (2004). Anaerobic methane oxidation and a deep H2S sink generate isotopically heavy sulfides in Black Sea sediments. Geochimica et Cosmochimica Acta 68: 2095–2118.
42 Jørgensen, B.B., Beulig, F., Egger, M. et al. (2019). Organoclastic sulfate reduction in the sulfate‐methane transition of marine sediments. Geochimica et Cosmochimica Acta 254: 231–245.
43 Johnston, D.T. (2011). Multiple sulfur isotopes and the evolution of Earth’s surface sulfur cycle. Earth‐Science Reviews 106: 161–183.
44 Johnston, D.T., Farquhar, J. and Canfield, D.E. (2007). Sulfur isotope insights into microbial sulfate reduction: when microbes meet models. Geochimica et Cosmochimica Acta 71: 3929–3947.
45 Johnston, D.T., Farquhar, J., Wing, B.A. et al. (2005). Multiple sulfur isotope fractionations in biological systems: a case study with sulfate reducers and sulfur disproportionators. American Journal of Sciences 305: 645–660.
46 Johnston, D.T., Gill, B.C., Masterson, A. et al. (2014). Placing an upper limit on the cryptic marine sulphur cycling. Nature 513: 530–533.
47 Kampschulte, A. and Strauss, H. (2004). The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates. Chemical Geology 204: 255–286.
48 Kaplan, I.R. and Rittenberg, S.C. (1964). Microbiological fractionation of sulphur isotopes. Journal of General Microbiology 34: 195–212.
49 Kaplan, I.R., Emery, K.O. and Rittenberg, S.C. (1963). The distribution and isotopic abundance of sulphur in recent marine sediments off southern California. Geochimica et Cosmochimica Acta 27: 297–331.
50 Kasting, J.F. (1993). Earth’s early atmosphere. Science 259: 920–926.
51 Knoll, A.H., Hayes, J.M., Kaufman, A.J. et al. (1986). Secular variation in carbon isotope ratios from upper Proterozoic successions of Svalbard and East Greenland. Nature 321: 832–838.
52 Krouse, H.R. and Coplen, T.B. (1997). Reporting of relative sulfur isotope‐ratio data. Pure and Applied Chemistry 69, 293–295.
53 Kunzmann, M., Bui, T.H., Crockford, P.W. et al. (2017). Bacterial sulfur disproportionation constrains timing of Neoproterozoic oxygenation. Geology 45: 207–210.
54 Kurzweil, F., Claire, M., Thomazo, C. et al. (2013). Atmospheric sulfur rearrangement 2.7 billion years ago: evidence for oxygenic photosynthesis. Earth and Planetary Science Letters 366: 17–26.
55 Leavitt, W.D., Halevy, I., Bradley, A.S. et al. (2013). Influence of sulfate reduction rates on the Phanerozoic sulfur isotope record. Proceedings of the National Academy of Sciences of the United States of America 110: 11244–11249.
56 Lin, Z.Y., Sun, X.M., Peckmann, J. et al. (2016). How sulfate‐driven anaerobic oxidation of methane affects the sulfur isotopic composition of pyrite: a SIMS study from the South China Sea. Chemical Geology 440: 26–41.
57 Lin, Z., Sun, X., Strauss, H. et al. (2017). Multiple sulfur isotope constraints on sulfate‐driven anaerobic oxidation of methane: evidence from authigenic pyrite in seepage areas of the South China Sea. Geochimica et Cosmochimica Acta 211: 153–173.
58 Marin‐Carbonne, J., Busigny, V., Miot, J. et al. (2019). In situ Fe and S isotope analyses in pyrite from the 3.2 Ga Mendon Formation (Barberton Greenstone Belt, South Africa): evidence for early microbial iron reduction. Geobiology 2020. DOI:10.1111/gbi.12385.
59 Melezhik, V.A., Fallick, A.E., Hanski, E.J. et al. (2005). Emergence of the aerobic biosphere during the Archean–Proterozoic transition: challenges of future research. GSA Today 15: 4–11.
60 Monster, J., Appel, P.W.U., Thode, H.G. et al. (1979). Sulfur isotope studies in early Archaean sediments from Isua, West Greenland: implications for the antiquity of bacterial sulfate reduction.