41 41. Fu, P., Hu, S., Xiang, J. et al. (2012). Evaluation of the porous structure development of chars from pyrolysis of rice straw: effects of pyrolysis temperature and heating rate. Journal of Analytical and Applied Pyrolysis 98: 177–183. https://doi.org/10.1016/j.jaap.2012.08.005.
42 42. Xu, Q., Tang, S., Wang, J. et al. (2018). Pyrolysis kinetics of sewage sludge and its biochar characteristics. Process Safety and Environmental Protection 115: 49–56. https://doi.org/10.1016/j.psep.2017.10.014.
43 43. Zhang, J., Gao, J., Chen, Y. et al. (2017). Characterization, preparation, and reaction mechanism of hemp stem based activated carbon. Results in Physics 7: 1628–1633. https://doi.org/10.1016/j.rinp.2017.04.028.
44 44. David, E. and Kopac, J. (2014). Activated carbons derived from residual biomass pyrolysis and their CO2 adsorption capacity. Journal of Analytical and Applied Pyrolysis 110: 322–332. https://doi.org/10.1016/j.jaap.2014.09.021.
45 45. Kumar, A. and Jena, H.M. (2016). Preparation and characterization of high surface area activated carbon from Fox nut (Euryale ferox) shell by chemical activation with H3PO4. Results in Physics 6: 651–658. https://doi.org/10.1016/j.rinp.2016.09.012.
46 46. Mistar, E.M., Alfatah, T., and Supardan, M.D. (2020). Synthesis and characterization of activated carbon from Bambusa vulgaris striata using two‐step KOH activation. Journal of Materials Research and Technology 9 (3): 6278–6286. https://doi.org/10.1016/j.jmrt.2020.03.041.
47 47. Liu, Z., Zhu, Z., Dai, J. et al. (2018). Waste biomass based‐activated carbons derived from soybean pods as electrode materials for high‐performance supercapacitors. ChemistrySelect 3 (21): 5726–5732. https://doi.org/10.1002/slct.201800609.
48 48. Kılıç, M., Apaydın‐Varol, E., and Pütün, A.E. (2012). Preparation and surface characterization of activated carbons from Euphorbia rigida by chemical activation with ZnCl2, K2CO3, NaOH and H3PO4. Applied Surface Science 261: 247–254. https://doi.org/10.1016/j.apsusc.2012.07.155.
49 49. Ncibi, M.C., Ranguin, R., Pintor, M.J. et al. (2014). Preparation and characterization of chemically activated carbons derived from Mediterranean Posidonia oceanica (L.) fibres. Journal of Analytical and Applied Pyrolysis 109: 205–214. https://doi.org/10.1016/j.jaap.2014.06.010.
50 50. Ponomarev, N. and Sillanpää, M. (2019). Combined chemical‐templated activation of hydrolytic lignin for producing porous carbon. Industrial Crops and Products 135: 30–38. https://doi.org/10.1016/j.indcrop.2019.03.050.
51 51. Hayashi, J., Kazehaya, A., Muroyama, K. et al. (2000). Preparation of activated carbon from lignin by chemical activation. Carbon 38 (13): 1873–1878. https://doi.org/10.1016/S0008‐6223(00)00027‐0.
52 52. Lillo‐Ródenas, M.A., Cazorla‐Amorós, D., and Linares‐Solano, A. (2003). Understanding chemical reactions between carbons and NaOH and KOH: an insight into the chemical activation mechanism. Carbon 41 (2): 267–275. https://doi.org/10.1016/S0008‐6223(02)00279‐8.
53 53. Foo, K.Y. and Hameed, B.H. (2012). Textural porosity, surface chemistry and adsorptive properties of durian shell derived activated carbon prepared by microwave assisted NaOH activation. Chemical Engineering Journal 187: 53–62. https://doi.org/10.1016/j.cej.2012.01.079.
54 54. Pütün, A.E., Gerçel, H.F., Koçkar, Ö.M. et al. (1996). Oil production from an arid‐land plant: fixed‐bed pyrolysis and hydropyrolysis of Euphorbia rigida. Fuel 75 (11): 1307–1312. https://doi.org/10.1016/0016‐2361(96)00098‐1.
55 55. Mazlan, M.A.F., Uemura, Y., Yusup, S. et al. (2016). Activated carbon from rubber wood sawdust by carbon dioxide activation. Procedia Engineering 148: 530–537. https://doi.org/10.1016/j.proeng.2016.06.549.
56 56. Rajgopal, S., Karthikeyan, T., Prakash Kumar, B.G. et al. (2006). Utilization of fluidized bed reactor for the production of adsorbents in removal of malachite green. Chemical Engineering Journal 116 (3): 211–217. https://doi.org/10.1016/j.cej.2005.09.026.
57 57. Prakash Kumar, B.G., Shivakamy, K., Miranda, L.R. et al. (2006). Preparation of steam activated carbon from rubberwood sawdust (Hevea brasiliensis) and its adsorption kinetics. Journal of Hazardous Materials 136 (3): 922–929. https://doi.org/10.1016/j.jhazmat.2006.01.037.
58 58. Im, U.S., Kim, J., Lee, S.H. et al. (2019). Preparation of activated carbon from needle coke via two‐stage steam activation process. Materials Letters 237: 22–25. https://doi.org/10.1016/j.matlet.2018.09.171.
59 59. Funke, A. and Ziegler, F. (2010). Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuels, Bioproducts and Biorefining 4 (2): 160–177. https://doi.org/10.1002/bbb.198.
60 60. Demirbas, A. (2004). Effects of temperature and particle size on bio‐char yield from pyrolysis of agricultural residues. Journal of Analytical and Applied Pyrolysis 72 (2): 243–248. https://doi.org/10.1016/j.jaap.2004.07.003.
61 61. Titirici, M., Antonietti, M., and Baccile, N. (2008). Hydrothermal carbon from biomass: a comparison of the local structure from poly‐ to monosaccharides and pentoses/hexoses. Green Chemistry 10: 1204–1212. https://doi.org/10.1039/B807009A.
62 62. Rodríguez Correa, C., Stollovsky, M., Hehr, T. et al. (2017). Influence of the carbonization process on activated carbon properties from lignin and lignin‐rich biomasses. ACS Sustainable Chemistry & Engineering 5 (9): 8222–8233. https://doi.org/10.1021/acssuschemeng.7b01895.
63 63. Bhat, V.V., Contescu, C.I., and Gallego, N.C. (2009). The role of destabilization of palladium hydride in the hydrogen uptake of Pd‐containing activated carbons. Nanotechnology 20 (20): 204011. https://doi.org/10.1088/0957‐4484/20/20/204011.
64 64. Fuertes, A.B., Arbestain, M.C., Sevilla, M. et al. (2010). Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover. Australian Journal of Soil Research 48 (7): 618–626. https://doi.org/10.1071/SR10010.
65 65. Dai, L., Chang, D.W., Baek, J.‐B. et al. (2012). Carbon nanomaterials for advanced energy conversion and storage. Micro and Nano: No Small Matter 8 (8): 1130–1166. https://doi.org/10.1002/smll.201101594.
66 66. Dreyer,