68 68 Lim, Y., Yoon, J., Yun, J. et al. (2014). Biaxially stretchable, integrated array of high performance microsupercapacitors. ACS Nano 8 (11): 11639–11650.
69 69 Wang, J., Li, F., Zhu, F. et al. (2018). Recent progress in micro‐supercapacitor design, integration, and functionalization. Small Methods 3 (8): 1800367.
70 70 Moon, Y.S., Kim, D., Lee, G. et al. (2015). Fabrication of flexible micro‐supercapacitor array with patterned graphene foam/MWNT‐COOH/MnOx electrodes and its application. Carbon 81: 29–37.
71 71 Qi, D., Liu, Z., Yu, M. et al. (2015). Highly stretchable gold nanobelts with sinusoidal structures for recording electrocorticograms. Adv. Mater. 27 (20): 3145–3151.
72 72 Li, L., Lou, Z., Han, W. et al. (2017). Highly stretchable micro‐supercapacitor arrays with hybrid MWCNT/PANI electrodes. Adv. Mater. Technol. 2 (3): 1600282.
73 73 Pu, J., Wang, X., Xu, R. et al. (2016). Highly stretchable microsupercapacitor arrays with honeycomb structures for integrated wearable electronic systems. ACS Nano 10 (10): 9306–9315.
74 74 He, S., Qiu, L., Wang, L. et al. (2016). A three‐dimensionally stretchable high performance supercapacitor. J. Mater. Chem. A 4 (39): 14968–14973.
75 75 Niu, Z., Zhou, W., Chen, X. et al. (2015). Highly compressible and all‐solid‐state supercapacitors based on nanostructured composite sponge. Adv. Mater. 27 (39): 6002–6008.
76 76 Guo, Y., Zheng, K., and Wan, P. (2018). A flexible stretchable hydrogel electrolyte for healable all‐in‐one configured supercapacitors. Small 14 (14): e1704497.
77 77 Jia, R., Li, L., Ai, Y. et al. (2018). Self‐healable wire‐shaped supercapacitors with two twisted NiCo2O4 coated polyvinyl alcohol hydrogel fibers. Sci. China Mater. 61 (2): 254–262.
78 78 Chen, C., Cao, J., Wang, X. et al. (2017). Highly stretchable integrated system for micro‐supercapacitor with AC line filtering and UV detector. Nano Energy 42: 187–194.
79 79 Li, L., Fu, C., Lou, Z. et al. (2017). Flexible planar concentric circular micro‐supercapacitor arrays for wearable gas sensing application. Nano Energy 41: 261–268.
80 80 Lou, Z., Li, Wang, L. et al. (2017). Recent progress of self‐powered sensing systems for Wearable Electronics. Small 13 (45): 1701791.
81 81 Chen, D., Lou, Z., Jiang, K. et al. (2018). Device configurations and future prospects of flexible/stretchable lithium‐ion batteries. Adv. Funct. Mater. 28 (51): 1805596.
82 82 Hagleitner, C., Hierlemann, A., Lange, D. et al. (2001). Smart single‐chip gas sensor microsystem. Nature 414 (6861): 293–296.
83 83 Chen, C., Cao, J., Lu, Q. et al. (2017). Foldable all‐solid‐state supercapacitors integrated with photodetectors. Adv. Funct. Mater. 27 (3): 1604639.
84 84 Hou, X., Liu, B., Wang, X. et al. (2013). SnO2‐microtube‐assembled cloth for fully flexible self‐powered photodetector nanosystems. Nanoscale 5 (17): 7831.
85 85 Hu, Y., Cheng, H., Zhao, F. et al. (2014). All‐in‐one graphene fiber supercapacitor. Nanoscale 6 (12): 6448–6451.
86 86 Xu, J. and Shen, G. (2015). A flexible integrated photodetector system driven by on‐chip microsupercapacitors. Nano Energy 13: 131–139.
87 87 Kim, D., Yun, J., Lee, G. et al. (2014). Fabrication of high performance flexible micro‐supercapacitor arrays with hybrid electrodes of MWNT/V2O5 nanowires integrated with a SnO2 nanowire UV sensor. Nanoscale 6 (20): 12034–12041.
88 88 Cao, X., Jie, Y., Wang, N. et al. (2016). Triboelectric nanogenerators driven self‐powered electrochemical processes for energy and environmental science. Adv. Energy Mater. 6 (23): 1600665.
89 89 Cha, S., Kim, S.M., Kim, H. et al. (2011). Porous PVDF as effective sonic wave driven nanogenerators. Nano Lett. 11 (12): 5142–5147.
90 90 Choi, D., Choi, M.Y., Choi, W.M. et al. (2010). Fully rollable transparent nanogenerators based on graphene electrodes. Adv. Mater. 22 (19): 2187.
91 91 Chun, J., Ye, B.U., Lee, J.W. et al. (2016). Boosted output performance of triboelectric nanogenerator via electric double layer effect. Nat. Commun. 7: 12985.
92 92 Fan, F.R., Tang, W., and Wang, Z.L. (2016). Flexible nanogenerators for energy harvesting and self‐powered electronics. Adv. Mater. 28 (22): 4283–4305.
93 93 Kwon, J., Seung, W., Sharma, B.K. et al. (2012). A high performance PZT ribbon‐based nanogenerator using graphene transparent electrodes. Energy Environ. Sci. 5 (10): 8970.
94 94 Lee, K.Y., Gupta, M.K., and Kim, S.W. (2015). Transparent flexible stretchable piezoelectric and triboelectric nanogenerators for powering portable electronics. Nano Energy 14: 139–160.
95 95 Lee, K.Y., Kim, D., Lee, J.‐H. et al. (2014). Unidirectional high‐power generation via stress‐induced dipole alignment from ZnSnO3Nanocubes/polymer hybrid piezoelectric nanogenerator. Adv. Funct. Mater. 24 (1): 37–43.
96 96 Wang, Z.L. (2012). Self‐powered nanosensors and nanosystems. Adv. Mater. 24 (2): 280–285.
97 97 Fu, Y., Wu, H., Ye, S. et al. (2013). Integrated power fiber for energy conversion and storage. Energy Environ. Sci. 6 (3): 805.
98 98 Guo, H., Yeh, M.H., Lai, Y.C. et al. (2016). All‐in‐one shape‐adaptive self‐charging power package for wearable electronics. ACS Nano 10 (11): 10580–10588.
99 99 Zi, Y., Lin, L., Wang, J. et al. (2015). Triboelectric‐pyroelectric‐piezoelectric hybrid cell for high‐efficiency energy‐harvesting and self‐powered sensing. Adv. Mater. 27 (14): 2340–2347.
100 100 Zhang, Z., Chen, X., Chen, P. et al. (2014). Integrated polymer solar cell and electrochemical supercapacitor in a flexible and stable fiber format. Adv. Mater. 26 (3): 466–470.
101 101 Yun, J., Song, C., Lee, H. et al. (2018). Stretchable array of high‐performance micro‐supercapacitors charged with solar cells for wireless powering of an integrated strain sensor. Nano Energy 49: 644–654.
102 102 Bi, D., Xu, B., Gao, P. et al. (2016). Facile synthesized organic hole transporting material for perovskite solar cell with efficiency of 19.8%. Nano Energy 23: 138–144.
103 103 Freitag, M., Teuscher, J., Saygili, Y. et al. (2017). Dye‐sensitized solar cells for efficient power generation under ambient lighting. Nat. Photonics 11 (6): 372–378.
104 104 Akhtar, F. and Rehmani, M.H. (2015). Energy replenishment using renewable and traditional energy resources for sustainable wireless sensor networks: a review. Renew. Sust. Energ. Rev. 45: 769–784.
105 105 Yue, Y., Yang, Z., Liu, N. et al. (2016). A flexible integrated system containing a microsupercapacitor, a photodetector, and a wireless charging coil. ACS Nano 10 (12): 11249–11257.
106 106 Kim, D., Kim, D., Lee, H. et al. (2016). Body‐attachable and stretchable multisensors integrated with wirelessly rechargeable energy storage devices. Adv. Mater. 28 (4): 748–756.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек,