По сути, это уравнение без α и β дает нам оценку букмекера для победы фаворита. Он считает, что шансы фаворита на победу в матче составляют 2/5, или 40 %. В остальных 60 % случаев будет ничья или победит аутсайдер.
Без α и β (точнее, при α = 1 и β = 1) мое уравнение ставок относительно несложно понять. Однако без α и β оно не принесет денег. Почему? Поставим 1 фунт на фаворита. Если коэффициент букмекера верен, два раза из пяти вы выиграете 1,5 фунта, а три из пяти проиграете по 1 фунту. Поэтому в среднем вы выиграете
Иными словами: после нескольких ставок вы почти ничего не выиграете. Нуль. Пшик. На деле всё еще хуже. Для начала я предположил, что коэффициенты букмекеров справедливы[9]. На самом деле нет. Букмекеры всегда подправляют их, чтобы ситуация складывалась в их пользу. И вместо того, чтобы предложить 3/2, заявят, скажем, 7/5. И если вы не знаете, что делаете, букмекеры всегда выиграют, а вы проиграете. При коэффициенте 7/5 вы будете в среднем проигрывать 4 пенса на ставку в 1 фунт[10].
Единственный способ обыграть букмекеров – рассмотреть эти числа, и именно такие данные компьютер Яна собирал после того, как мы посидели в пабе. Он скачал коэффициенты и результаты для всех матчей чемпионатов мира и Европы, включая отборочные игры, начиная с чемпионата мира в Германии в 2006 году. Утром, усевшись в моем офисе в университете, мы начали искать преимущество.
Сначала мы загрузили данные и посмотрели на них в таблице, подобной нижеприведенной.
Из таких прошлых результатов мы можем получить представление о том, насколько точны коэффициенты: для этого надо сравнить два последних столбца вышеприведенной таблицы. Например, в матче между Испанией и Австралией на чемпионате мира 2014 года коэффициенты дают вероятность 73 %, что Испания выиграет, и она действительно победила. Это можно считать «хорошим» прогнозом. А вот Коста-Рика обыграла Италию, хотя коэффициенты давали 63 % на победу итальянцев, – «плохой» прогноз.
Я пишу слова «хороший» и «плохой» в кавычках, поскольку нельзя сказать, хорош или плох прогноз, если нет альтернативы, с которой его можно сравнить. Вот здесь и появляются α и β. Их называют параметрами уравнения 1. Это величины, которые мы можем менять для тонкой настройки нашего уравнения, чтобы сделать его точнее. Мы не можем изменить итоговые коэффициенты для матча Испания – Австралия и определенно неспособны повлиять на результат этого матча сборных; но можем выбрать α и β так, чтобы получить более точный прогноз, чем у букмекеров.
Метод поиска наилучших параметров – логистическая регрессия. Чтобы описать, как она работает, сначала посмотрим, как можно улучшить наш прогноз на матч Испания – Австралия с помощью корректировки числа β. Если я приму β = 1,2 и оставлю α = 1, получу
Поскольку результатом матча была победа Испании, прогноз на победу в 77 % лучше, чем прогноз