Сигнал и шум. Почему одни прогнозы сбываются, а другие – нет. Нейт Сильвер. Читать онлайн. Newlib. NEWLIB.NET

Автор: Нейт Сильвер
Издательство:
Серия:
Жанр произведения: Публицистика: прочее
Год издания: 2012
isbn: 978-5-389-09938-8
Скачать книгу
областях, являются вероятностными.

      Вместо того чтобы «выплеснуть» одну цифру и утверждать, что я точно знаю, что произойдет далее, я показываю диапазон возможных результатов. Например, 2 ноября 2010 г. мой прогноз о возможном количестве мест республиканцев в Конгрессе США выглядел так, как показано на рис. 2.1.

      Предполагалось, что наиболее вероятное количество мест, которое наберут республиканцы, находилось в диапазоне, перекрывающем почти половину всех возможных вариантов, – от 45 до 65 (в реальности они получили 63 места). Однако также имелась возможность выигрыша республиканцами 70 или 80 мест – но уж точно не предсказанной Диком Моррисом сотни. И существовала вероятность того, что демократы удержат достаточно мест для сохранения контроля над Конгрессом.

      Рис. 2.1. Прогноз количества мест республиканцев в Конгрессе США на 2 ноября 2010 г. от FiveThirtyEight

      Широкий разброс исходов выборов отражал неопределенность, присущую реальному миру. Прогноз был создан на основе индивидуальных прогнозов для каждого из 435 мест в Конгрессе – и в большинстве кампаний разрыв межу конкурировавшими кандидатами был минимальным. В результате судьба 77 мест в Конгрессе определялась разрывом голосов менее чем в 10 %{171}. Если бы демократы обогнали собственные прогнозы в самых конкурентных регионах всего на пару процентов, то смогли бы легко удержать за собой Конгресс. Если бы то же самое смогли сделать республиканцы, то превратили бы свою победу в невероятный триумф. Небольшие колебания политических течений могли бы привести к существенно иному результату; поэтому было бы глупо сводить описание происходящего к точной цифре.

      Этот вероятностный принцип также сохраняется в случаях, когда я прогнозирую, чем завершатся отдельные кампании. Например, насколько велика вероятность выигрыша кандидата, если он, по итогам опросов, опережает конкурента на пять пунктов? Именно такие вопросы и призваны решать модели типа FiveThirtyEight.

      Ответ на подобный вопрос в значительной степени зависит от типа гонки, в которую вовлечен кандидат. Чем ниже уровень выборов, тем более волатильными становятся результаты: данные опросов на предвыборной гонке в Конгресс менее точны, чем данные опросов при выборах в Сенат, а те, в свою очередь, менее точны, чем опросы перед выборами президента. Также считается, что, в целом опросы в ходе предварительных партийных выборов (праймериз) значительно менее точны, чем опросы в ходе общих выборов. Во время праймериз Демократической партии в 2008 г. средняя величина ошибки в данных опроса составляла около восьми пунктов – значительно больше, чем подразумевается при оценке ее погрешности. Проблема опросов в ходе республиканских праймериз 2012 г. была еще масштабнее{172}. Фактически во многих важных штатах – включая Айову, Южную Каролину, Флориду, Мичиган, Вашингтон, Колорадо, Огайо, Алабаму и Миссисипи – кандидат, лидировавший в ходе опросов


<p>171</p>

«Election Results: House Big Board», New York Times, November 2, 2010. http://elections.nytimes.com/2010/results/house/big-board.

<p>172</p>

Nate Silver, «A Warning on the Accuracy of Primary Polls», FiveThirtyEight, New York Times, March 1, 2012. http://i vethirtyeight.blogs.nytimes.com/2012/03/01/a-warning-on-the-accuracy-of-primary-polls/.