Meteorologie. Hans Häckel. Читать онлайн. Newlib. NEWLIB.NET

Автор: Hans Häckel
Издательство: Bookwire
Серия:
Жанр произведения: Математика
Год издания: 0
isbn: 9783846355046
Скачать книгу
Kohlendioxid-Angebot mit verstärktem Wachstum und bindet dadurch jährlich zusätzliche 2 Gt Kohlenstoff. 23

      Das zusätzliche Kohlendioxid stammt aber nicht nur aus der Verbrennung fossiler Energieträger. Gewaltige Mengen – mehr als 2 Gt – werden bei der Rodung von Wäldern und der Zerstörung des Bodens freigesetzt, wobei von letzterem keine genügend belastbaren Zahlen vorliegen.

      Bei der natürlichen Vegetation ist das Gleich­ge­wicht zwischen der Kohlenstoff-bindenden Photosynthese (120 Gt) auf der einen Seite sowie der Kohlenstoff-produzierenden Verrottung (60 Gt) und Veratmung (die sogenannte Respiration, z. B. bei Dunkelheit) auf der anderen Seite (60 Gt) weltweit ausgeglichen.

      Zu beängstigenden Konzentrationen kommt es in industriellen Ballungsgebieten, wo Werte weit über 450 ppm gemessen werden. In einem extremen Fall (Londoner Smog) hat man schon 3 000 ppm, also fast die 10fache Normalmenge gefunden (Möller, 1973) (→ Kap. 2.3.2, S. 86).

      Aus dem Alltag

      CO2-Ausstoß von Verkehrsmitteln pro Person in kg/100 km:

Pedelec:0,4
Fernlinienbus:2,3
IC; ICE:3,6
Elektro-PKW mit 2 Personen besetzt:6,2
ÖPNV:6,4
Diesel-PKW Mittelklasse; mit 2 Personen besetzt:8,1

      Quelle: WDR-Verbrauchsrechner (über Link abrufbar).

       https://www.quarks.de/umwelt/klimawandel/co2-rechner-fuer-auto-flugzeug-und-co/

      Distickstoffoxid (N2O)

      Distickstoffoxid, auch unter dem Namen Lachgas bekannt, ist in der Atmosphäre mit 0,32 ppm vertreten. Nach Crutzen (1983) stammen etwa 7 Mio. t pro Jahr aus natürlichen Quellen. Zu ihnen zählen die Wald-, Busch- und Steppenbrände, die 2 Mio. t pro Jahr liefern, das Ausgasen aus Ozeanen, das ebenfalls 2 Mio. t pro Jahr und die Bodenatmung, die 3 Mio. t pro Jahr freisetzt. Weitere 8 Mio. t pro Jahr werden aus anthropogenen Quellen freigesetzt: teils durch das Verbrennen fossiler Energieträger, teils durch die in der landwirtschaftlichen Produktion verwendeten Düngemittel.

      Neuerdings (Schönwiese, 2020) werden jedoch erheblich höhere anthropogene Beiträge genannt. Einschlägige Forschungsergebnisse deuten außerdem darauf hin, dass bis zu 90 % des anthropogen produzierten N2O aus der Landnutzung stammen könnten.

      Der Zusammenhang zwischen Düngemitteleinsatz und N2O-Bildung stellt sich folgendermaßen dar: Wenn im Boden viel Wasser und wenig Luft vorhanden ist – man spricht dann von anaeroben Verhältnissen – breiten sich Bakterienarten aus, die den für ihre Lebensvorgänge notwendigen Sauerstoff aus dem stufenweisen Abbau von Nitratradikalen beziehen.

      Dabei läuft folgende Reaktionskette ab:

      NO3 → NO2 → NO → N2O (→ N2)

      Bei jedem Reaktionsschritt wird Sauerstoff abgegeben.

      Man nennt diesen Vorgang mikrobielle Denitrifikation. Die in die Reaktionsfolge eintretenden Nitrate stammen entweder aus Kunstdünger oder sind unter aeroben Verhältnissen von entsprechenden Bodenbakterien aus leicht zersetzbarem organischem Dünger, z. B. Gülle, aufgebaut worden. Beschleunigend wirken: hoher Bodenwassergehalt – insbesondere Staunässe – oder Bodenverdichtungen jeweils bei gleichzeitig hohen Bodentemperaturen. Vorgänge dieser Art laufen selbstverständlich auch außerhalb landwirtschaftlicher Nutzflächen ab, wenn auch langsamer. Das dabei entstehende N2O wurde oben in die Bodenatmung mit einbezogen.

      Der Gehalt der Luft an Distickstoffoxid hat in den letzten Jahren kontinuierlich zugenommen. Aus Messungen an den US-amerikanischen Baseline-Stationen weiß man, dass seine Konzentration jedes Jahr um 0,75 ppb steigt. Abgebaut wird Lachgas fast ausschließlich in der Stratosphäre unter Bildung Ozon zerstörender NOx-Radikale. Wegen seines auf rund 4 % bezifferten Beitrags zum atmosphärischen Glashauseffekt zählt es zu den klimarelevanten Substanzen.

      Methan (CH4)

      Die Atmosphäre enthält im Durchschnitt etwa 1,81 ppm Methan. Neben natürlichen Quellen tragen auch menschliche Aktivitäten zur Produktion dieses stark klimarelevanten Gases bei. Sein 24 Beitrag zum Glashauseffekt wird auf 16 % geschätzt. Khalil und Rasmussen (1982) beziffern die beim Reisanbau freigesetzte Methanmenge auf jährlich 95 Mio. t. Im Verdauungstrakt der etwa 1,3 Mrd. auf der Erde lebenden Rinder und anderer Wiederkäuer entstehen durch bakterielle Zersetzung von Zellulose schätzungsweise 130 Mio. t pro Jahr. Bei der Verbrennung von Biomasse werden weitere 25 Mio. t und durch andere anthropogene Aktivitäten (Umgang mit Erdgas, Kohlebergbau und Mülldeponien) schließlich noch einmal 130 Mio. t in die Atmosphäre abgegeben. Das macht zusammen rund zwei Drittel der Jahresproduktion aus. Der Rest stammt aus natürlichen Quellen. Hierunter fällt auch die in der jüngsten Zeit diskutierte Methanproduktion durch Termiten, die auf ähnliche Vorgänge zurückgeht wie die in den Rinderpansen.

      Man kann davon ausgehen, dass die Methankonzentration derzeit jährlich um 4 ppb steigt. Sollten als Folge von Klimaänderungen die sogenannten Permafrostböden, das sind ganzjährig gefrorene Böden in den hohen geografischen Breiten, auftauen, dann werden heute noch unabsehbare CH4-Mengen zusätzlich freigesetzt. (Neuere Zahlen bei Schönwiese, 2020)

      Bolin et al. (1986) konnten einen eindeutigen Zusammenhang zwischen dem Methangehalt der Luft und der Weltbevölkerung nachweisen. Danach steigt die Konzentration um 0,22 ppm pro Mrd. Menschen. Abgebaut wird Methan in erster Linie durch Reaktion mit OH-Radikalen, durch Vorgänge in der hohen Atmosphäre und durch Bodenbakterien.

      Aus dem Alltag

      Bei Verbrennungsvorgängen, beim Umgang mit Erdgas, bei der landwirtschaftlichen Produktion (Nass­reisanbau) und bei der Viehhaltung wird doppelt so viel Methan freigesetzt wie aus natürlichen Quellen.

      Halogenierte Kohlenwasserstoffe

      Diese Stoffgruppe ist auch unter Namen wie Fluor-Chlor-Kohlenwasserstoffe, Chlorfluormethane oder FCKWs bekannt. Sie bestehen aus Kohlenwasserstoffen, bei denen ein oder mehrere Wasserstoffatome durch Chlor- oder Fluoratome ersetzt sind. Die am häufigsten verwendeten sind CFCl3 und CF2CI2, bekannt unter den Handelsnamen F11 und F12.

      Im Gegensatz zu den bisher genannten atmosphärischen Spurenstoffen stammen sämtliche FCKWs aus menschlicher Produktion. Bevor im „Montrealer Protokoll“ von 1987 vereinbart wurde, ihre Herstellung zu stoppen, wurden sie hauptsächlich als Kühlmittel in Kühlschränken und Klimaanlagen, als Reinigungsmittel insbesondere für elektronische Bauteile oder als Treibmittel zur Schaumstoffproduktion und in Spraydosen eingesetzt. Ihren verbreiteten Einsatz verdankten diese Stoffe vier außerordentlich wichtigen Eigenschaften: Erstens lassen sie sich leicht verflüssigen (Kühlmittel), zweitens sind sie chemisch äußerst reaktionsträge, gehen also keine Verbindungen ein, drittens sind sie nicht giftig und schließlich viertens nicht brennbar.

      Aber gerade die chemische Stabilität ist es, die den Klimaforschern und Luftchemikern seit vielen Jahren Sorgen bereitet. Da die halogenierten Kohlenwasserstoffe nämlich in der unteren Atmosphäre (Troposphäre) keine Reaktionspartner finden, gelangen sie bis in Höhen über 20 km hinauf, wo sie auf die dort vorhandene Ozonschicht treffen. Die in dieser Höhe herrschenden physikalischen und chemischen Bedingungen ermöglichen den FCKWs Reaktionen, die schließlich zum Abbau dieser Schicht führen. Darüber hinaus leisten sie einen Beitrag zum atmosphärischen Glashauseffekt, der vor dem Produktionsstopp auf bis zu 11 % beziffert wurde.

      Ozon (O3)

      Ozon ist ein dreiatomiger Sauerstoff. Er entsteht in Höhen zwischen etwa 10 und 50 km unter der Wirkung der ultravioletten Sonnenstrahlung aus gewöhnlichem Sauerstoff. Seine maximale Konzentration von 8 bis 10 µg/g Luft – das sind knapp 10 ppm – erreicht es je nach geografischer Breite in 15 bis 30 km Höhe. Seine mittlere Höhenverteilung ist in Abbildung 1.15 (→ S. 47) dargestellt.

      Merke