Polar Organometallic Reagents. Группа авторов. Читать онлайн. Newlib. NEWLIB.NET

Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Химия
Год издания: 0
isbn: 9781119448846
Скачать книгу
Haag, B., Mosrin, M., Ila, H. et al. (2011). Angew. Chem. Int. Ed. 50: 9794–9824.

      34 34 Sakamoto, S., Imamoto, T., and Yamaguchi, K. (2001). Org. Lett. 3: 1793–1795.

      35 35 Yang, K.‐C., Chang, C.‐C., Huang, J.‐Y. et al. (2002). J. Organomet. Chem. 648: 176–187.

      36 36 Kawachi, A., Nagae, S., Onoue, Y. et al. (2011). Chem. Eur. J. 17: 8005–8008.

      37 37 Davin, L., McLellan, R., Hernán‐Gómez, A. et al. (2017). Chem. Commun. 53: 3653–3656.

      38 38 Bakewell, C., White, A.J.P., and Crimmin, M.R. (2016). J. Am. Chem. Soc. 138: 12763–12766.

      39 39 Bakewell, C., Ward, B.J., White, A.J.P., and Crimmin, M.R. (2018). Chem. Sci. 9: 2348–2356.

      40 40 Davin, L., McLellan, R., Kennedy, A.R., and Hevia, E. (2017). Chem. Commun. 53: 11650–11653.

      41 41 Caubère, P. (1993). Chem. Rev. 93: 2317–2334.

      42 42 Lochmann, L., Pospíšil, J., and Lím, D. (1966). Tetrahedron Lett. 2: 257–262.

      43 43 Schlosser, M. (1967). J. Organomet. Chem. 8: 9–16.

      44 44 Schlosser, M. and Strunk, S. (1984). Tetrahedron Lett. 25: 741–744.

      45 45 Schlosser, M., Chi, J.H., and Takagishi, S. (1990). Tetrahedron 46: 5633–5648.

      46 46 Katsoulos, G., Takagishi, S., and Schlosser, M. (1991). Synlett: 731–732.

      47 47 Schlosser, M. (1988). Pure Appl. Chem. 60: 1627–1634.

      48 48 Lochmann, L. (2000). Eur. J. Inorg. Chem.: 1115–1126.

      49 49 Schlosser, M. (2005). Angew. Chem.Int. Ed. 44: 376–393.

      50 50 Schlosser, M., Choi, J.H., and Takagishi, S. (1990). Tetrahedron 46: 5633–5648.

      51 51 McGarrity, J.F. and Ogle, C.A. (1985). J. Am. Chem. Soc. 107: 1805–1810.

      52 52 Marsch, M., Harms, K., Lochmann, L., and Boche, G. (1990). Angew. Chem. Int. Ed. Engl. 29: 308–309.

      53 53 e.g. Clegg, W., Drummond, A. M., Liddle, S. T., Mulvey, R. E., Roberston, A. (1999). Chem. Commun. 1569–1570.

      54 54 Mackenzie, F.M., Mulvey, R.E., Clegg, W., and Horsburgh, L. (1996). J. Am. Chem. Soc. 118: 4721–4722.

      55 55 Kennedy, A.R., MacLellan, J.G., and Mulvey, R.E. (2001). Angew. Chem. Int. Ed. 40: 3245–3247.

      56 56 Wei, X., Dong, Q., Tong, H. et al. (2008). Angew. Chem. Int. Ed. 47: 3976–3978.

      57 57 Lochmann, L. and Lím, D. (1971). J. Organomet. Chem. 28: 153–158.

      58 58 Pi, R., Bauer, W., Brix, B. et al. (1986). J. Organomet. Chem. 306: C1–C4.

      59 59 Harder, S. and Streitwieser, A. (1993). Angew. Chem. Int. Ed. Engl. 32: 1066–1068.

      60 60 Unkelbach, C., O’Shea, D.F., and Strohmann, C. (2014). Angew. Chem. Int. Ed. 53: 553–556.

      61 61 Gau, G. (1976). J. Organomet. Chem. 121: 1–6.

      62 62 Benrath, P., Kaiser, M., Limbach, T. et al. (2016). Angew. Chem. Int. Ed. 55: 10886–10889.

      63 63 Jennewein, B., Kimpel, S., Thalheim, D., and Klett, J. (2018). Chem. Eur. J. 24: 7605–7609.

      64 64 Mulvey, R.E., Mongin, F., Uchiyama, M., and Kondo, Y. (2007). Angew. Chem. Int. Ed. 46: 3802–3824.

      65 65 Krasovskiy, A., Krasovskaya, V., and Knochel, P. (2006). Angew. Chem., Int. Ed. 45: 2958–2961.

      66 66 Mosrin, M. and Knochel, P. (2008). Org. Lett. 10: 2497–2500.

      67 67 Lin, W., Baron, O., and Knochel, P. (2006). Org. Lett. 8: 5673–5676.

      68 68 Clososki, G.C., Rohbogner, C.J., and Knochel, P. (2007). Angew. Chem. Int. Ed. 46: 7681–7684.

      69 69 Forbes, G.C., Kennedy, A.R., Mulvey, R.E. et al. (2001). J. Chem. Soc., Dalton Trans.: 1477–1484.

      70 70 Hevia, E., Gallagher, D.J., Kennedy, A.R. et al. (2004). Chem. Commun.: 2422–2423.

      71 71 Graham, D.V., Hevia, E., Kennedy, A.R. et al. (2006). Chem. Commun.: 417–419.

      72 72 Blair, V.L., Kennedy, A.R., Klett, J., and Mulvey, R.E. (2008). Chem. Commun.: 5426–5428.

      73 73 García‐Álvarez, P., Graham, D.V., Hevia, E. et al. (2008). Angew. Chem. Int. Ed. 47: 8079–8081.

      74 74 Armstrong, D.R., García‐Álvarez, P., Kennedy, A.R. et al. (2010). Angew. Chem. Int. Ed. 49: 3185–3188.

      75 75 Li, D., Keresztes, I., Hopson, R., Williard, P. G. (2008). Acc. Chem. Res. 41, 270–280.

      76 76 Guang, J., Hopson, R., Williard, P. G. (2015). J. Org. Chem. 80, 9102–9107.

      77 77 Neufeld, R. and Stalke, D. (2016). Chem. Eur. J. 22: 12624–12628.

      78 78 Tuckmantel, W., Oshima, K., and Nozaki, H. (1986). Chem. Ber. 119: 1581–1593.

      79 79 Isobe, M., Kondo, S., Nagasawa, N., and Goto, T. (1977). Chem. Lett.: 679–682.

      80 80 Kondo, Y., Takazawa, N., Yamazaki, C., and Sakamoto, T. (1994). J. Org. Chem. 59: 4717–4718.

      81 81 Kondo, Y., Takazawa, N., Yoshida, A., and Sakamoto, T. (1995). J. Chem. Soc., Perkin Trans. 1: 1207–1208.

      82 82 Kondo, Y., Morey, J.V., Morgan, J.C. et al. (2007). J. Am. Chem. Soc. 129: 12734–12738.

      83 83 Weiss, E. and Wolfrum, R. (1968). Chem. Ber. 101: 35–40.

      84 84 Fröhlich, H.‐O., Kosan, B., Müller, B., and Hiller, W. (1992). J. Organomet. Chem. 441: 177–184.

      85 85 Fröhlich, H.‐O., Kosan, B., Undeutsch, B., and Görls, H. (1994). J. Organomet. Chem. 472: 1–14.

      86 86 Armstrong, D.R., Dougan, C., Graham, D.V. et al. (2008). Organometallics 27: 6063–6070.

      87 87 Uchiyama, M., Koike, M., Kameda, M. et al. (1996). J. Am. Chem. Soc. 118: 8733–8734.

      88 88 Uchiyama, M., Kameda, M., Mishima, O. et al. (1998). J. Am. Chem. Soc. 120: 4934–4946.

      89 89 Kondo, Y., Fujinami, M., Uchiyama, M., and Sakamoto, T. (1997). J. Chem. Soc., Perkin Trans. 1: 799–800.

      90 90 Westerhausen, M., Rademacher, B., Schwarz, W., and Anorg, Z. (1993). Allg. Chem. 619: 675–689.

      91 91 Wyrwa, R., Fröhlich, H.‐O., and Görls, H. (1996). Organometallics 15: 2833–2835.

      92 92 Rijnberg, E., Jastrzebski, J.T.B.H., Boersma, J. et al. (1997). Organometallics 16: 2239–2245.

      93 93 Armstrong, D.R., Kennedy, A.R., Mulvey, R.E. et al. (2012). Chem. Sci. 3: 2700–2707.

      94 94 Armstrong, D.R., Crosbie, E., Hevia, E. et al. (2014). Chem. Sci. 5: 3031–3045.

      95 95 Armstrong, D.R., Emerson, H.S., Hernán‐Gómez, A. et al. (2014). Dalton Trans. 43: 14229–14238.

      96 96 Robert, A.J., Kennedy, A.R., McLellan, R. et al. (2016). Eur. J. Inorg. Chem.: 4752–4760.

      97 97 Westerhausen, M., Wieneke, M., Ponikwar, W. et al. (1998). Organometallics 17: 1438–1441.

      98 98 Kondo, Y., Matsudaira, T., Sato, J. et al. (1996). Angew. Chem. Int. Ed. Engl. 35: 736–738.

      99 99 Boger, D.L. and Coleman, R.S. (1988). J. Am. Chem. Soc. 110: 1321–1323.

      100 100 Boger, D.L. and Coleman, R.S. (1988). J. Am. Chem. Soc. 110: 4796–4807.

      101 101 Kelly, R.C., Gehhard, I., Wicnienski, N. et al. (1987). J. Am. Chem. Soc. 109: 6837–6838.

      102 102 Boger, D.L. and Machiya, K. (1992). J. Am. Chem. Soc. 114: 10056–10058.

      103 103 Boger, D.L., Machiya, K., Hertog, D.L. et al. (1993). J. Am. Chem. Soc. 115: 9025–9036.

      104 104 Muratake, H., Abe, I., and Natsume, M. (1994). Tetrahedron Lett. 35: 2573–2576.

      105 105 Wehmeyer, G.W. and Rieke, R.D. (1987). J.