Key points
Ageing is associated with structural and functional changes in the nervous system.
Neurodegenerative conditions share some pathophysiological processes, neuropathological modifications, and phenotypic manifestations with the physiological ageing process.
A neurological examination of the ageing individual commonly reveals clinical abnormalities.
Age‐related changes in cognition are not uniform across all older individuals and mostly occur in specific cognitive domains.
References
1 1. Feigin VL, Nichols E, Alam T, et al. Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019; 18(5):459–80.
2 2. Wyss‐Coray T. Ageing, neurodegeneration and brain rejuvenation. Nature. 2016; 539(7628):180–6.
3 3. Brayne C, Davis D. Making Alzheimer’s and dementia research fit for populations. Lancet. 2012; 380(9851):1441–3.
4 4. Canevelli M, Troili F, Bruno G. Reasoning about frailty in neurology: neurobiological correlates and clinical perspectives. J Frailty Aging. 2014; 3(1):18–20.
5 5. Seidler RD, Bernard JA, Burutolu TB, et al. Motor control and aging: links to age‐related brain structural, functional, and biochemical effects. Neurosci Biobehav Rev. 2010; 34(5):721–33.
6 6. Lemaitre H, Goldman AL, Sambataro F, et al. Normal age‐related brain morphometric changes: nonuniformity across cortical thickness, surface area and gray matter volume? Neurobiol Aging. 2012; 33(3):617.e1–9.
7 7. Raz N, Gunning FM, Head D, et al. Selective aging of the human cerebral cortex observed in vivo: differential vulnerability of the prefrontal gray matter. Cereb Cortex N Y N 1991. 1997; 7(3):268–82.
8 8. Raz N. Ageing and the Brain. American Cancer Society; 2005. Accessed 2019 Dec 30. https://onlinelibrary.wiley.com/doi/abs/10.1038/npg.els.0004063
9 9. Douaud G, Groves AR, Tamnes CK, et al. A common brain network links development, aging, and vulnerability to disease. Proc Natl Acad Sci. 2014; 111(49):17648–53.
10 10. Yeatman JD, Wandell BA, Mezer AA. Lifespan maturation and degeneration of human brain white matter. Nat Commun. 2014; 5:4932.
11 11. Liu H, Wang L, Geng Z, et al. A voxel‐based morphometric study of age‐ and sex‐related changes in white matter volume in the normal aging brain. Neuropsychiatr Dis Treat. 2016; 12:453–65.
12 12. Madden DJ, Bennett IJ, Burzynska A, Potter GG, Chen N, Song AW. Diffusion tensor imaging of cerebral white matter integrity in cognitive aging. Biochim Biophys Acta BBA – Mol Basis Dis. 2012; 1822(3):386–400.
13 13. Grajauskas LA, Siu W, Medvedev G, Guo H, D’Arcy RCN, Song X. MRI‐based evaluation of structural degeneration in the ageing brain: Pathophysiology and assessment. Ageing Res Rev. 2019; 49:67–82.
14 14. Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 2010; 9(7):689–701.
15 15. Inzitari D, Pracucci G, Poggesi A, et al. Changes in white matter as determinant of global functional decline in older independent outpatients: three year follow‐up of LADIS (leukoaraiosis and disability) study cohort. BMJ. 2009 Jul 6; 339:b2477. doi: 10.1136/bmj.b2477.
16 16. Keage HA, Carare RO, Friedland RP, Ince PG, Love S, Nicoll JA, et al. Population studies of sporadic cerebral amyloid angiopathy and dementia: a systematic review. BMC Neurol. 2009; 9(1):3.
17 17. Hecht M, Krämer LM, von Arnim CAF, Otto M, Thal DR. Capillary cerebral amyloid angiopathy in Alzheimer’s disease: association with allocortical/hippocampal microinfarcts and cognitive decline. Acta Neuropathol (Berl). 2018; 135(5):681–94.
18 18. Viswanathan A, Greenberg SM. Cerebral amyloid angiopathy in the elderly. Ann Neurol. 2011; 70(6):871–80.
19 19. Espay AJ, Vizcarra JA, Marsili L, et al. Revisiting protein aggregation as pathogenic in sporadic Parkinson and Alzheimer diseases. Neurology. 2019; 92(7):329–37.
20 20. Davis DG, Schmitt FA, Wekstein DR, Markesbery WR. Alzheimer neuropathologic alterations in aged cognitively normal subjects. J Neuropathol Exp Neurol. 1999; 58(4):376–88.
21 21. Markesbery WR, Jicha GA, Liu H, Schmitt FA. Lewy body pathology in normal elderly subjects. J Neuropathol Exp Neurol. 2009; 68(7):816–22.
22 22. Boyle PA, Yu L, Wilson RS, Leurgans SE, Schneider JA, Bennett DA. Person‐specific contribution of neuropathologies to cognitive loss in old age. Ann Neurol. 2018; 83(1):74–83.
23 23. Mattson MP, Arumugam TV. Hallmarks of Brain Aging: Adaptive and Pathological Modification by Metabolic States. Cell Metab. 2018; 27(6):1176–99.
24 24. Pandya JD, Grondin R, Yonutas HM, et al. Decreased mitochondrial bioenergetics and calcium buffering capacity in the basal ganglia correlates with motor deficits in a nonhuman primate model of aging. Neurobiol Aging. 2015; 36(5):1903–13.
25 25. López‐Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The Hallmarks of Aging. Cell. 2013; 153(6):1194–217.
26 26. Nixon RA. The role of autophagy in neurodegenerative disease. Nat Med. 2013; 19(8):983–97.
27 27. Toescu EC, Verkhratsky A, Landfield PW. Ca2+ regulation and gene expression in normal brain aging. Trends Neurosci. 2004; 27(10):614–20.
28 28. Stranahan AM, Mattson MP. Recruiting adaptive cellular stress responses for successful brain ageing. Nat Rev Neurosci. 2012 18;13(3):209–16.
29 29. DiSabato D, Quan N, Godbout JP. Neuroinflammation: The devil is in the details. J Neurochem. 2016; 139(Suppl 2):136–53.
30 30. Mather M, Harley CW. The locus coeruleus: essential for maintaining cognitive function and the aging brain. Trends Cogn Sci. 2016; 20(3):214–26.
31 31. Bliss TV, Lomo T. Long‐lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol. 1973; 232(2):331–56.
32 32. Mango D, Saidi A, Cisale GY, Feligioni M, Corbo M, Nisticò R. Targeting synaptic plasticity in experimental models of Alzheimer’s disease. Front Pharmacol. 2019; 10:778.
33 33. Schirinzi T, Canevelli M, Suppa A, Bologna M, Marsili L. The continuum between neurodegeneration, brain plasticity, and movement: a critical appraisal. Rev Neurosci. 2020 Oct 25; 31(7):723–742. doi: 10.1515/revneuro‐2020‐0011. PMID: 32678804.
34 34. Freitas C, Perez J, Knobel M, et al. Changes