Along with folate deficiency and alcoholism, vitamin B12 deficiency is one of the three most common causes of macrocytosis (defined as blood cells with MCV levels >100 fL) in older adults.36 However, up to 17% of patients do not present with the classic finding of macrocytosis, and up to 28% of B12‐deficient patients have a normal haemoglobin, making the diagnosis challenging at times.37 There is no gold standard diagnostic test for vitamin B12 deficiency. In general, vitamin B12 deficiency anaemia is diagnosed by a low haemoglobin and low vitamin B12 levels on laboratory studies (Figure 22.4). No absolute cut‐off levels defining B12 deficiency exist, and some controversy surrounds what specific level warrants treatment. The WHO suggests that vitamin B12 levels of less than 200 pg/mL be considered deficient, but many research studies use the level of 150 pg/mL to define deficiency. Around these levels, homocysteine and methylmalonic acid (MMA) become elevated and can aide in the diagnostic process, particularly when B12 levels are equivocal (i.e. 200–350 pg/mL).38 In fact, B12 levels of less than 200 pg/mL are associated with the presence of elevated MMA and homocysteine levels with a diagnostic sensitivity of greater than 96%.37 Because MMA is as sensitive as – but more specific than – homocysteine, it is the confirmatory test of choice.37 It should be noted that MMA and homocysteine levels are expensive diagnostic tests and have the best utility when the diagnosis of vitamin B12 deficiency is unclear (i.e. symptomatic patients with low‐normal B12 levels or asymptomatic patients with a high risk of B12 deficiency and low‐normal B12 values). No consensus exists on when additional diagnostic tests should be added.
Vitamin B12 deficiency may lead to non‐specific symptoms such as peripheral neuropathy, gait ataxia, mood changes, weakness, cognitive impairment, vitiligo, and glossitis39; however, symptoms are typically absent. To date, no major medical organization has published guidelines on routine screening for B12 deficiency at the population‐based level. Clinicians should have a high suspicion in at‐risk individuals (i.e. those with history of bowel resection, atrophic gastritis, inflammatory bowel disease, or specialized diets and metformin or acid‐suppressant users) and consider screening on an annual basis. It should be noted that falsely normal B12 levels can occur in those with hepatic or renal disease or myeloproliferative disorders. Falsely low B12 values may be seen in those with folate deficiency or multiple myeloma.40
Fortunately, vitamin B12 deficiency anaemia is readily treatable. The goals of treatment are to alleviate any symptoms, if present, and replenish the vitamin B12 stores in the liver. Treatment options include intramuscular (IM) B12 or oral B12. The typical IM dose is 1000 mcg weekly for severe deficiency and then monthly for maintenance treatment. About 10–15% of each injection is absorbed, so stores are replenished quickly. However, in most cases, oral supplemental B12 is as effective as IM supplementation and is less costly. Oral B12 can be absorbed even in the presence of inadequate acid secretion because it does not have to be broken apart from animal protein to be bound to intrinsic factor.41 Higher oral doses (2000 mcg daily) can be used indefinitely to treat B12 deficiency from pernicious anaemia/atrophic gastritis because of the small amount of passive free absorption of B12 not bound to intrinsic factor that occurs.42 No evidence‐based guidelines dictate specific dose efficacy or treatment duration. In general, haemoglobin and vitamin B12 levels should be checked again around three months after treatment initiation to ensure treatment success. In those with pernicious anaemia or history of gastric or bowel resection, the treatment will be needed indefinitely because absorption with these conditions will likely remain deficient.
Figure 22.4 Diagnostic laboratory values for vitamin B12 deficiency anaemia.
In summary, vitamin B12 deficiency anaemia results from inadequate vitamin B12 intake or malabsorption. There is no gold standard diagnostic test. The diagnosis relies on the presence of anaemia (RBCs may or may not be macrocytic) and a low B12 level. Serum MMA and homocysteine levels can be added to increase diagnostic sensitivity but are not required. Treatment can occur via oral or IM supplementation, but in general, oral supplementation is easier and less costly to administer, and likely as effective in most cases if given at high enough doses. Haemoglobin and B12 levels can be rechecked in three months after initiation of supplementation to validate treatment response.
Folate deficiency anaemia
Folate deficiency anaemia has become uncommon in the United States after a 1998 mandate by the Food and Drug Administration to fortify all grain products with folic acid. This was done in an effort to reduce congenital neural tube defects.43 Folate is considered an ‘essential micronutrient’. It is not synthesized by the body and needs to be consumed through diet or supplementation. Also known as vitamin B9, folate plays an essential role in neurotransmitter synthesis as well as cellular DNA synthesis and repair.44 It is primarily contained in green, leafy vegetables and also in some animal products. Folic acid is the synthesized form of folate that is present in supplements or fortified foods and has a higher bioavailability than folate. Although rare, folate deficiency can still occur due to inadequate intake, malabsorption, or conditions resulting in increased folate requirements. Several medications such as methotrexate, sulfasalazine, trimethoprim, and phenytoin interfere with folate metabolism and can lead to deficiencies in the absence of supplementation.45
Individuals with chronic malnourishment, restrictive diets, or alcoholism are at risk for folate deficiency and resultant anaemia. Impaired absorption can occur in those with a history of gastric or bowel resection or of inflammatory bowel disease since folate is absorbed in the jejunum by passive transport. Vitamin B12 deficiency can lead to relative folate deficiency because vitamin B12 is required for cellular metabolism cycles that convert folate into its most active bioavailable form, tetrahydrofolate.46 In such cases, once vitamin B12 levels are corrected, the folate deficiency resolves without supplementation. Unlike vitamin B12, folate is not stored in large quantities, and deficiencies develop much more quickly, over weeks to months. Once deficient, individuals may develop non‐specific symptoms similar to those seen in vitamin B12 deficiency – glossitis, fatigue, depression, and/or cognitive impairment.
Laboratory studies are used to confirm the diagnosis of folate deficiency anaemia. Classically considered a megaloblastic anaemia, a low haemoglobin, elevated MCV, and low serum folate level will be seen. Typically, there is also a low reticulocyte count. Serum folate levels <2 ng/mL are considered deficient, while levels 2–4 ng/mL are borderline and >4 ng/mL are considered normal. When folate levels are borderline, further confirmation of a deficiency can occur with MMA and homocysteine levels. MMA levels are normal, while homocysteine levels are elevated in folate deficiency. This is contrasted in vitamin B12 deficiency, which can be confirmed when both the MMA and homocysteine levels are elevated. Another confirmative test that may be useful is the quantitative level of folate within RBCs (as opposed to the folate level in blood plasma). Because this is relatively fixed for the lifecycle of the RBC, it is indicative of folate status over the preceding 120 days and can help identify when the deficiency began.47 The serum folate level