55 Reed‐Hill, R.E. and Abbaschian, R. (1992). Physical Metallurgy Principles, 3e. Boston, MA: PWS‐Kent Publishing Company.
56 Ross, E.W. and Sims, C.T. (1987). Nickel‐Base alloys. In: Superalloys II (eds. C.T. Sims, N.S. Stoloff and W.C. Hagel), 97–133. New York: A Wiley‐Interscience Publication, John Wiley & Sons.
57 Sabol, G.P. (1969). Microstructure of nickel‐based superalloys. Phys. Status Solidi B 35 (1): 11–52. https://doi.org/10.1002/pssb.19690350102.
58 Sauer, C. and Lütjering, G. (2001). Thermo‐mechanical processing of high strength β‐titanium alloys and effects on microstructure and properties. J. Mater. Process. Technol. 117 (3): 311–317.
59 Sinha, N.K. (1971). On the Studies of Rheo‐Optical Response of Plate Glass in a Wide Temperature Range, Ph.D. Thesis. University of Waterloo, Waterloo, Ontario, Canada.
60 Stephens, J.R. (1989). Chapter 2 ‐ Resources—Supply and Availability. In: Superalloys, Supercomposites and Superceramics (eds. J.K. Tien and T. Caulfield), 9. Boston: Academic Press, Inc.
61 Stoloff, N.S. (1987). Fundamentals of strengthening. In: Superalloys II (eds. C.T. Sims, N.S. Stoloff and W.C. Hagel), 61–96. New York: A Wiley‐Interscience Publication, John Wiley & Sons.
62 Thamburaj, R., Wallace, W., and Goldak, J.A. (1983). Post‐weld heat‐treatment cracking in superalloys. Int. Metals Rev. 28: 1. 1–22, DOI: 10.1179/imtr.1983.28.1.1
63 Uginet, J.F. (1994). Processing of near‐beta Ti alloys for high strength applications. In: Beta‐Titanium Alloys (eds. A. Vassel, D. Eylon and Y. Combres), 33–40. Paris: SF2M.
64 United States Geological Survey (2012). Facts About Nickel: Nickel Uses, Resources, Supply, Demand, and Production Information. Geoscience news and Information. Republished from a USGS Fact Sheet from March 2012. Retrieved July 27, 2020 https://geology.com/usgs/uses‐of‐nickel/#:~:text=Earth's%20nickel%20core%3A%20The%20average,composed%20of%20iron%20and%20nickel.
65 Vainshtein, B.K., Cardona, M., Fulde, P., and Queisser, H.‐J. (1982). Modern crystallography I, symmetry of crystals. Methods of structural crystallography. Cryst. Res. Technol. 17: 352–352. https://doi.org/10.1002/crat.2170170316.
66 Valenti, M. (1999). Mechanical engineering. ASME 121: 45.
67 VerSnyder, F.L. and Guard, R.W. (1960). Directional grain structure for high temperature strength. Trans. ASM 52: 485.
68 VerSnyder, F.L. and Shank (1970). Mater. Sci. Eng. 6: 213.
69 Vinci, A., Zoli, L., Sciti, D. et al. (2018). Understanding the mechanical properties of novel UHTCMCs through random forest and regression tree analysis. Mater. Des. 145: 97–107. https://doi.org/10.1016/j.matdes.2018.02.061.
70 Ward‐Harvey, K. (2009). Fundamental Building Materials, 4e, 83–90. Florida: USA: Universal‐Publishers. ISBN 978‐1‐59942‐954‐0.
71 Warren, B.E. (1940). Geometrical considerations in glass. J. Soc. Glas. Technol. 24: 159.
72 West, T.R. (1995). Geology Applied to Engineering, 560. Englewood Cliffs, New Jersey: Prentice‐Hall, Inc.
73 Wood, R.A. and Favor, R.J. (1972). Titanium Alloys Handbook. Ohio, USA: Air Force Materials Laboratory, Wright‐Paterson Air Force Base, 1‐7:72‐1.
74 Zachariasen, W.H. (1932). The atomic arrangement in glass. J. Am. Chem. Soc. 54 (10): 3841–3851.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.