Congo Basin Hydrology, Climate, and Biogeochemistry. Группа авторов. Читать онлайн. Newlib. NEWLIB.NET

Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: География
Год издания: 0
isbn: 9781119656999
Скачать книгу
34(8), 2792–2804. doi: 10.1002/joc.3875

      94 Tapley, B., Bettadpur, S., Watkins, M., & Reigber, C. (2004). The Gravity Recovery and Climate Experiment: Mission overview and early results. Geophysical Research Letters, 31, 1–4. doi: 10.1029/ 2004GL019920

      95 Thomas, B. F., Famiglietti, J. S., Landerer, F. W., Wiese, D. N., Molotch, N. P., & Argus, D. F. (2017). GRACE groundwater drought index: Evaluation of California Central Valley groundwater drought. Remote Sensing of Environment, 198(Supplement C), 384–392. doi: 10.1016/j.rse.2017.06.026

      96 Tockner, K., Lorang, M. S., & Stanford, J. A. (2010). River flood plains are model ecosystems to test general hydrogeomorphic and ecological concepts. River Research and Applications, 26(1), 76–86. doi: 10.1002/rra.1328

      97 Tshimanga, R. M., & Hughes, D. A. (2014). Basin‐scale performance of a semi‐distributed rainfall‐runoff model for hydrological predictions and water resources assessment of large rivers: The Congo River. Water Resources Research, 50(2), 1174–1188. doi: 10.1002/2013WR014310

      98 Van Loon, A. F., Kumar, R., & Mishra, V. (2017). Testing the use of standardised indices and GRACE satellite data to estimate the European 2015 groundwater drought in near‐real time. Hydrology and Earth System Sciences, 21(4), 1947–1971. doi: 10.5194/hess‐21‐1947‐2017

      99 Van Loon, A. F., Stahl, K., Di Baldassarre, G., Clark, J., Rangecroft, S., Wanders, N., et al. (2016). Drought in a human‐modified world: reframing drought definitions, understanding, and analysis approaches. Hydrology and Earth System Sciences, 20(9), 3631–3650. doi: 10.5194/hess‐20‐3631‐2016

      100 Van Loon, A. F., Tijdeman, E., Wanders, N., Van Lanen, H. A., Teuling, A. J., & Uijlenhoet, R. (2014). How climate seasonality modifies drought duration and deficit. Journal of Geophysical Research: Atmospheres, 119(8), 4640–4656. doi: 10.1002/2013JD020383

      101 Vapnik, V. (1995). The Nature of Statistical Learning Theory. New York, NY: Springer.

      102 Verhegghen, A., Mayaux, P., de Wasseige, C., & Defourny, P. (2012). Mapping Congo Basin vegetation types from 300 m and 1 km multi‐sensor time series for carbon stocks and forest areas estimation. Biogeosciences, 9(12), 5061–5079. doi: 10.5194/bg‐9‐5061‐2012

      103 Vicente‐Serrano, S. M., Beguería, S., & López‐Moreno, J. I. (2010a). A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. Journal of Climate, 23(7), 1696–1718. doi: 10.1175/2009JCLI2909.1

      104 Vicente‐Serrano, S. M., Beguería, S., López‐Moreno, J. I., Angulo, M., & El Kenawy, A. (2010b). A new global 0.5° gridded dataset (1901–2006) of a multiscalar drought index: Comparison with current drought index datasets based on the palmer drought severity index. Journal of Hydrometeorology, 11(4), 1033–1043. doi: 10.1175/2010JHM1224.1

      105 Wada, Y., Bierkens, M. F. P., de Roo, A., Dirmeyer, P. A., Famiglietti, J. S., Hanasaki, N., et al. (2017). Human‐water interface in hydrological modelling: Current status and future directions. Hydrology and Earth System Sciences, 21(8), 4169–4193. doi: 10.5194/hess‐21‐4169‐2017

      106 Washington, R., James, R., Pearce, H., Pokam, W. M., & Moufouma‐Okia, W. (2013). Congo Basin rainfall climatology: can we believe the climate models? Philosophical Transactions of the Royal Society of London B: Biological Sciences, 368(1625). doi: 10.1098/rstb.2012.0296

      107 Watkins, M. M., Wiese, D. N., Yuan, D., Boening, C., & Landerer, F. W. (2015). Improved methods for observing earth’s time variable mass distribution with GRACE using spherical cap mascons. Journal of Geophysical Research: Solid Earth, 120(4), 2648–2671. doi: 10.1002/2014JB011547

      108 Wauters, M., & Vanhoucke, M. (2014). Support vector machine regression for project control forecasting. Automation in Construction, 47, 92–106. doi: 10.1016/j.autcon.2014.07.014.

      109 Wiese, D. N., Landerer, F. W., & Watkins, M. M. (2016). Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution. Water Resources Research, 52(9), 7490–7502. https://doi.org/10.1002/2016WR019344

      110 Zhao, D., Jiang, H., Yang, T., Cai, Y., Xu, D., & An, S. (2012). Remote sensing of aquatic vegetation distribution in Taihu Lake using an improved classification tree with modified thresholds. Journal of Environmental Management, 95(1), 98–107. doi: 10.1016/j.jenvman.2011.10.007

      111 Zhou, L., Tian, Y., Myneni, R. B., Ciais, P., Saatchi, S., Liu, Y. Y., et al. (2014). Widespread decline of congo rainforest greenness in the past decade. Nature, 509(7498), 86–90. doi: 10.1038/nature13265

       Cyriaque-Rufin Nguimalet1, Didier Orange2, Jean-Pascal Waterendji1, and Athanase Yambele3

       1 Department of Geography, University of Bangui, Bangui, Central African Republic

       2 Joint Research Unit “Eco&Sols” (UMR Eco&Sols), INRA, IRD, Montpellier SupAgro and CIRAD, Montpellier, France

       3 National Directorate of Meteorology, Ministry of Transport and Civil Aviation, Bangui, Central African Republic

      ABSTRACT

      The rainfall reduction in the 1970s, less marked in Central Africa than in West Africa, still had a major impact on the hydrological regimes of the region’s large rivers. The study of the hydropluviometric behavior of the Ubangi River at Mobaye has the advantage of being a study of a basin excluding anthropogenic impact. Forest cover and population density have not changed since at least 1970. Statistical analysis of the breaks in the long rainfall time series to Mobaye (1938–2015) confirms a long period of drought from 1969 to 2006, corresponding to a reduction of 8% in rainfall. Also, the study of the corresponding hydrological series indicates a second downward break in 1981, marking an exceptional hydrological drought. Flows increased in 2013, a few years after the rainfall increase. The statistical study of the annual rainfall/flow series of the upstream basins over the period 1951–1995 (the Kotto River in Kembe and Bria, the Mbomu River in Bangassou and Zemio, and the Uele River + Bili hydrographic system) highlights different hydrological behaviors related to the vegetation cover. On the one hand, the savannah basins show a continuous hydrological deficit marked by a runoff coefficient (CE) that fell to only 5% from the 1990s. On the other hand, the basins under forest show a runoff increase since 1990, marked by a CE above 10%. Under savannah, the part of the flow infiltrating to recharge the aquifer would have decreased faster than under forest, which results in a runoff CE very significantly negatively correlated with the savannah area present in the studied watershed.