Но можно ли вообразить что-либо более нелепое и противоречивое, чем это рассуждение? Все, что может быть представлено посредством ясной и отчетливой идеи, необходимо заключает в себе возможность своего существования; и всякий, кто берется доказать невозможность существования чего-либо с помощью аргумента, основанного на ясной идее, в действительности утверждает, что у нас нет ясной идеи об этом, потому что у нас есть ясная идея. Напрасно искать какое-либо противоречие в том, что отчетливо представляется нашим умом. Если бы в этом заключалось какое-нибудь противоречие, оно совсем не могло бы быть представлено.
Таким образом, нет ничего среднего между допущением по крайней мере возможности неделимых точек и отрицанием их идеи; последний принцип и лежит в основании второго ответа на вышеизложенный аргумент. Было высказано мнение[8], что хотя невозможно представить длину без всякой ширины, однако с помощью абстракции без разделения мы можем рассматривать первую, не принимая в расчет второй, точно так же как мы можем думать о длине пути между двумя городами, не обращая внимания на его ширину. Длина неотделима от ширины как в природе, так и в наших мыслях; но это не исключает ни частичного их рассмотрения, ни объясненного выше различения разумом.
Опровергая этот ответ, я не стану опираться на уже в достаточной степени выясненный мною аргумент: если ум не может достигнуть минимума в своих идеях, то его способность [представления] должна была бы быть бесконечной, чтобы он мог охватить бесконечное число частей, из которых состояла бы его идея любого протяжения. Я постараюсь теперь найти новые нелепости в этом рассуждении.
Поверхность ограничивает тело, линия – поверхность, точка – линию; но я утверждаю, что, если бы идеи точки, линии или поверхности не были неделимы, мы вовсе не могли бы представить этих ограничений. Предположим, что эти идеи бесконечно делимы, и пусть затем воображение постарается остановиться на идее последней поверхности, линии или точки; оно тотчас заметит, что идея эта распадается на части; остановившись же на последней из этих частей, оно тотчас потеряет точки опоры в силу нового деления и т. д. in infinitum без малейшей возможности дойти до заключительной идеи. Все это количество делений так же мало приближает его к последнему делению, как и первая идея, им образованная. Каждая частица ускользает от схватывания благодаря новому делению, точно