58 Osorno, J.M., Vander Wal, A.J., Kloberdanz, M., Pasche, J.S., Schroder, S, & Miklas, P. (2018). A new slow‐darkening pinto bean with improved agronomic performance: registration of ‘ND‐Palomino’. Journal of Plant Registrations 12: 25–30.
59 Osorno, J.M., Vander Wal, A.J., Posch, J., Simons, K., Grafton, K.F. & Pasche, J.S. (2020). ‘ND Whitetail’, a new white kidney bean with high seed yield and intermediate resistance to white mold and bacterial blights. Journal of Plant Registrations 14: 102–109.
60 Powrie, W.D., Adams, M.W. & Pflug, I.J. (1960). Chemical, anatomical, and histochemical studies of the Navy bean seed. Agronomy Journal 52: 163–167.
61 Prasad, R., Shivay, Y.S. & Nene, Y.L. (2016). Asia's contribution to the evolution of agriculture: creativity, history, and mythology. Asian Agri‐History 20: 233–252.
62 Rousseau, S., Kyomugasho, C., Celus, M., Hendrickx, M.E. & Grauwet, T. (2020). Barriers impairing mineral bioaccessibility and bioavailability in plant‐based foods and the perspectives for food processing. Critical Reviews in Food Science and Nutrition 60: 826–843.
63 Ruengsakulrach, S. (1990). Navy bean physico‐chemical characteristics and canned product quality. PhD Dissertation. Michigan State University, East Lansing, Michigan. 162p.
64 Saio, K. (1976). Soybeans resistant to water absorption. Cereal Foods World 21: 168–173.
65 Salunkhe, D.K., Chavan, J.K. & Kadam, S.S. (editors) (1990). Dietary Tannins: Consequences and Remedies, pp. 29–76, 122–134. Boca Raton, FL: CRC Press.
66 Schuchert, W. (2020). Common bean (Phaseolus vulgaris L.). Available at https://s2.lite.msu.edu/res/msu/botonl/b_online/schaugarten/PhaseolusvulgarisL/Common_bean.html (accessed Nov 25, 2020).
67 Schumacher, S. & Boland, M. (2017). Dry edible bean profile. Available at https://www.agmrc.org/commodities‐products/grains‐oilseeds/dry‐edible‐bean‐profile (accessed December 2, 2020).
68 Sefa‐Dedeh, S., & Stanley, D.W. (1979a). The relationship of microstructure of cowpeas to water absorption and dehulling properties. Cereal Chemistry 56: 379–386.
69 Sefa‐Dedeh, S. & Stanley, D.W. (1979b). Textural implications of the microstructure of legumes. Food Technology 33(10): 77–83.
70 Siah, S., Wood, J.A., Agboola, S., Konczak, I. & Blanchard, C.L. (2014). Effects of soaking, boiling and autoclaving on the phenolic contents and antioxidant activities of faba beans (Vicia faba L.) differing in seed coat colours. Food Chemistry 142: 461–468.
71 Singh, B., Singh, J.P., Kaur, A. & Singh, N. (2017). Phenolic composition and antioxidant potential of grain legume seeds: A review. Food Research International 101: 1–16.
72 Singh, N. (2017). Pulses: an overview. Journal Food Science and Technology 54: 853–857.
73 Smoliak, S., Ditterline, R.L., Scheetz, J.D., Holzworth, L.K., Sims, J.R., Wiesner, L.R., Baldridge, D.E. & Tibke, G.L. (1990). Montana Interagency Plant Materials Handbook. Bozeman, MT: Montana State University Extension Service.
74 Sutton, L.A. & Coyne, D.P. (2010). Vegetable Cultivar Descriptions for North America − Dry Bean (Lists 1–27). Available at http://cucurbitbreeding.com/todd‐wehner/publications/vegetable‐cultivar‐descriptions‐for‐north‐america/beans‐dry/ (accessed July 21, 2020).
75 Swanson, B.G., Hughes, J.S. & Rasmussen, P.H. (1985). Seed microstructure: a review of water imbibitions in legumes. Food Microstructure 4: 115–124.
76 Tanno, K.I. & Willcox, G. (2006). The origins of cultivation of Cicer arietinum L. and Vicia faba L.: early finds from Tell el‐Kerkh, north‐west Syria, late 10th millennium BP. Vegetation History and Archaeobotany 15: 197–204.
77 Uebersax, M.A., Reungsakulrach, S. & Hosfield, G.L. (1989). Uses of common dry field beans. In: Food Uses of Whole Oil and Protein Seeds (eds. E.W. Lusas, D.R. Erickson, W. Nip), pp. 231–253. Champaign, IL: The American Oil Chemists Society.
78 Uebersax, M.A. Reungsakulrach, S. & Occena, L.G. (1991). Strategies and procedures for processing dry beans. Food Technology 45(9): 104–111.
79 UN (United Nations). (2013). Resolution 68/231. International Year of Pulses, 2016. Available at https://undocs.org/en/A/RES/68/231 (accessed September 18, 2020).
80 Urrea, C.A., Steadman, J.R., Pastor‐Corrales, M.A., Lindgren, D.T. & Venegas, J.P. (2009). Registration of great northern common bean cultivar ‘Coyne’ with enhanced disease resistance to common bacterial blight and bean rust. Journal of Plant Registrations 3: 219–222.
81 Urrea, C.A., & Valentin‐Cruzado, E. (2020). 2019 Nebraska dry bean variety trials. Nebraska Extension Publication MP109. 6 p.
82 USDA (United States Department of Agriculture). (2017a). United States Standards for Beans. Available online at http://www.gipsa.usda.gov/fgis/standards/Bean‐Standards.pdf (accessed July 21, 2020).
83 USDA (United States Department of Agriculture). (2017b). United States Standards for Lentils. Available online at http://www.gipsa.usda.gov/fgis/standards/lentils.pdf (accessed July 21, 2020).
84 Voysest, O. (2012). Yellow beans in Latin America. Report 0084‐7747. Cali, Colombia: Centro International de Agricultura Tropical (CIAT).
85 Westphal, E. (1974). Pulses in Ethiopia, their taxonomy and agricultural significance. PhD Dissertation, Wageningen University, Wageningen, Netherlands. 273p.
86 Wiesinger, J.A., Cichy K.A., Tako, E. & Glahn, R.P. (2018). The fast cooking and enhanced iron bioavailability properties of properties of the Manteca yellow bean (Phaseolus vulgaris L.). Nutrients 10: 1609.
87 Wu, X., Beecher, G.R., Holden, J.M., Haytowitz, D.B., Gebhardt, S.E. & Prior, R.L. (2004). Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. Journal of Agricultural & Food Chemistry 52: 4026–4037.
88 Xu, B.J. & Chang, S.K.C. (2009). Total phenolic, phenolic acid, anthocyanin, flavan‐3‐ol, and flavonol profiles and antioxidant properties of pinto and black beans (Phaseolus vulgaris L.) as affected by thermal processing. Journal of Agricultural & Food Chemistry 57: 4754–4764.
89 Zhong, L., Fang, Z., Wahlqvist, M.L., Wu, G., Hodgson, J.M. & Johnson, S.K. (2018). Seed coats of pulses as a food ingredient: Characterization, processing, and applications. Trends in Food Science & Technology 80: 35–42.
90 Zimmermann, G., Weissmann. S. & Yannai, S. (1967). The distribution of protein, lysine and methionine, and antitryptic activity in the cotyledons of some leguminous seeds. Journal of Food Science 32: 129–130.
4 Harvesting, Postharvest Handling, Distribution, and Marketing of Dry Beans
Mark A. Uebersax, Muhammad Siddiq, Joe Cramer and Scott Bales