22 Blair, M.W., Iriarte, G. & Beebe, S. (2006). QTL analysis of yield traits in an advanced backcross population derived from a cultivated Andean x wild common bean (Phaseolus vulgaris L.) cross. Theoretical & Applied Genetics 112: 1149–1163.
23 Blair, M.W., Pedraza, F., Buendia, H.F., Gaitan‐Solis, E., Beebe, S.E., Gepts, P. & Tohme, J. (2003). Development of a genome‐wide anchored microsatellite map for common bean (Phaseolus vulgaris L.). Theoretical & Applied Genetics 107: 1362–1374.
24 Bonfim, K., Faria, J.C., Nogueira, E.O.P.L., Mendes, E.A. & Aragão, F.J.L. (2007). RNAi‐mediated resistance to bean golden mosaic virus in genetically engineered common bean (Phaseolus vulgaris). Molecular Plant–Microbe Interactions 20: 717–726.
25 Bornowski, N., Song, Q., Kelly, J.D. (2020). QTL mapping of post‐processing color retention in two black bean populations. Theoretical & Applied Genetics 133: 3085–3100.
26 Butler, N. & Cichy, K.A. (2011). Protein content and canning quality of historically important navy bean varieties in Michigan. Annual Report of the Bean Improvement Cooperative 54: 8–9.
27 Cardona, C., Posso, C.E., Kornegay, J., Valor, J. & Serrano, M. (1989). Antibiosis effects of wild dry bean accessions on the Mexican bean weevil and the bean weevil (Coleoptera: Bruchidae). Journal of Economic Entomology 82: 310–315.
28 Chaverra, M.H. & Graham, P.H. (1992). Cultivar variation in traits affecting early nodulation in common bean. Crop Science 32: 1432–1436.
29 Checa, O.E. &, Blair, M.W. (2008). Mapping QTL for climbing ability and component traits in common bean (Phaseolus vulgaris L.). Molecular Breeding 22: 201–215.
30 Cichy, K.A., Caldas, G.V., Snapp, S.S. & Blair, M.W. (2009). QTL analysis of seed iron, zinc, and phosphorus levels in an Andean bean population. Crop Science 49:1742–1750.
31 Cichy, K.A., Fernandez, A., Kilian, A., Kelly, J.D., Galeano, C.H., Shaw, S., Brick, M., Hodkinson, D. & Troxtell, E. (2014). QTL analysis of canning quality and color retention in black beans (Phaseolus vulgaris L.). Molecular Breeding 33: 139–154.
32 Cichy, K.A., Porch, T.G., Beaver, J.S., Cregan, P., Fourie, D., Glahn, R.P., Grusak, M.A., Kamfwa, K., Katuuramu, D.N., McClean, P. & Mndolwa, E. (2015). A Phaseolus vulgaris diversity panel for Andean bean improvement. Crop Science 55: 2149–2160.
33 Cordain, L. (1999). Cereal grains: humanity’s double‐edged sword. World Review of Nutrition and Dietetics 84:19–73.
34 Diaz, S., Ariza‐Suarez, D., Izquierdo, P., Lobaton, J.D., de la Hoz, J.F., Acevedo, F., Duitama, J., Guerrero, A.F., Cajiao, C., Mayor, V. & Beebe, S.E. (2020). Genetic mapping for agronomic traits in a MAGIC population of common bean (Phaseolus vulgaris L.) under drought conditions. BMC Genomics 21: 1–20.
35 Fehr, W.R. (1987). Principles of Cultivar Development, vol 1. Theory and Technique. New York, NY: Macmillan Publishing Company. 536 p.
36 Freyre, R., Skroch, P.W., Geffroy, V., Adam‐Blondon, A.F., Shirmohamadali, A., Johnson, W.C., Llaca, V., Nodari, R.O., Pereira, P.A., Tsai, S.M. & Tohme, J. (1998). Towards an integrated linkage map of common bean. 4. Development of a core linkage map and alignment of RFLP maps. Theoretical & Applied Genetics 97: 847–856.
37 Freytag, G.F. & Debouck, D.G. (2002). Taxonomy, distribution, and ecology of the genus Phaseolus (Leguminosae‐Papilionoideae) in North America, Mexico and Central America. Fort Worth, Texas: Botanical Research Institute of Texas (BRIT). 298p.
38 Frick, B., Telford, L. & Martens, J.T. (2017). Organic Field Crop Handbook (ed. J. Wallace.) Ottawa, Canada: Canadian Organic Growers, Inc. 63p.
39 FtF (Feed the Future). (2021a). Innovation Lab for Legume Systems Research. Available at https://www.canr.msu.edu/legumelab/ (accessed March 23, 2021).
40 FtF (Feed the Future). (2021b). Bean Research Team. Available at http://arsftfbean.uprm.edu/bean/ (accessed March 23, 2021).
41 Gaultier, J. & Gulden, R. (2016). The science and art of dry bean desiccation. Crops & Soils 49: 12–15.
42 Gepts, P. (1988). A Middle American and an Andean common bean gene pool. In: Genetic Resources of Phaseolus Beans (ed. P. Gepts), pp. 375–390. Dordrecht, the Netherlands: Kluwer Academic Publishers.
43 Gepts, P. (2000). A phylogenetic and genomic analysis of crop germplasm: a necessary condition for its rational conservation and use. In: Proceedings of Stadler Genetics Symposium, June 8–10, 1998 (ed. J.P. Gustafson), pp. 163–181. Columbia, MO. Plenum.
44 Gepts, P. (2004). Who owns biodiversity, and how should the owners be compensated? Plant Physiology 134: 1295–1307.
45 Gioia, T., Logozzo, G., Marzario, S., Spagnoletti Zeuli, P. & Gepts, P. (2019). Evolution of SSR diversity from wild types to U.S. advanced cultivars in the Andean and Mesoamerican domestications of common bean (Phaseolus vulgaris). PLoS ONE 14: e0211342.
46 Graham, P.H., Rosas, J.C., Estevez de Jensen, C., Peralta, E., Tlusty, B., Acosta‐Gallegos, J. & Arraes Pereira, P.A. (2003). Addressing edaphic constraints to bean production: The Bean/Cowpea CRSP project in perspective. Field Crops Research 82: 179–192.
47 Hannah, M.A., Krämer, K.M., Geffroy, V., Kopka, J., Blair, M.W., Erban, A., Vallejos, C.E., Heyer, A.G., Sanders, F.E.T., Millner, P.A. & Pilbeam, D.J. (2007). The DL gene system in common bean (Phaseolus vulgaris L.) causes programmed root death due to a shoot‐derived inhibitory signal. New Phytologist 176: 537–549
48 Heilig, J.A. & Kelly, J.D. (2012). Performance of dry bean genotypes grown under organic and conventional production systems in Michigan. Agronomy Journal 104: 1485–1492.
49 Heilig, J.A., Beaver, J.S., Wright, E.M., Song, Q. & Kelly, J.D. (2017a). QTL analysis of symbiotic nitrogen fixation in a black bean population. Crop Science 57: 118–129.
50 Heilig, J.A., Wright, E.M. & Kelly, J.D. (2017b). Symbiotic nitrogen fixation of black and navy bean under organic production systems. Agronomy Journal 109: 2223–2230.
51 Hosfield, G.L. & Uebersax, M.A. (1980). Variability in physico‐chemical properties and nutritional components of tropical and domestic dry bean germplasm. Journal of the American Society of Horticultural Scientists 105: 246–252.
52 Islam, F.M.A., Basford, K.E., Jara, C., Redden, R.J. & Beebe, S.E. (2002). Seed compositional and disease resistance differences among gene pools in cultivated common bean. Genetic Resources and Crop Evolution 49: 285–293
53 Kamfwa, K., Cichy, K.A. & Kelly, J.D. (2015). Genome‐wide association analysis of symbiotic nitrogen fixation in common bean. Theoretical & Applied Genetics 128: 1999–2017.
54 Katuuramu, D.N., Hart, J.P., Porch, T.G., Grusak, M.A., Glahn, R.P. & Cichy, K.A. (2018). Genome‐wide association analysis of nutritional composition‐related traits and iron bioavailability in cooked dry beans (Phaseolus vulgaris L.). Molecular Breeding 38: 1–18.
55 Katuuramu, D.N., Wiesinger, J.A., Luyima, G.B., Nkalubo, S., Glahn, R.P. & Cichy, K.A. (2021). Investigation of genotype by environment interactions for seed zinc and iron concentration and iron bioavailability in common bean. Frontiers in Plant Science 12: p.669.
56 Keller, B., Ariza‐Suarez, D., De La Hoz, J., Aparicio, J.S., Portilla‐Benavides, A.E., Buendia, H.F., Mayor, V.M., Studer, B. & Raatz, B. (2020). Genomic prediction of agronomic traits in common bean (Phaseolus vulgaris L.) under environmental stress. Frontiers in Plant Science 11: 1001.
57 Kelly, J.D. (2000). Remaking bean plant architecture for efficient production. Advances in Agronomy 71: 109–143.
58 Kelly, J.D. (2004). Advances in common bean improvement: some case histories with broader applications. Acta Horticulturae 637: 99–122.
59 Kelly, J.D. (2018). Developing improved varieties of common bean. In: Achieving Sustainable Cultivation of Grain Legumes, vol. 2 (eds. S. Sivasankar,