VCSEL Industry. Babu Dayal Padullaparthi. Читать онлайн. Newlib. NEWLIB.NET

Автор: Babu Dayal Padullaparthi
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Техническая литература
Год издания: 0
isbn: 9781119782216
Скачать книгу
object detection for autonomous vehicles and intelligent transport through powerful long‐range LiDARs up to 250 m or beyond. Further high‐power VCSEL arrays (where 100 000 to a few million units of emitters are needed) find applications in industrial heating.

      Furthermore, we find VCSEL applications in neighboring areas such as coherent communication, laser printers, additive manufacturing, gas sensing and spectroscopy, biometrics such as optical coherence tomography (OCT) and iris scans, gaming (VR and MR), robotics, and drones attracting considerable investments, particularly on AI programming, smart home and IoT, and automotive Ethernet and even to quantum computing.

      1.5.3 Toward VCSEL High‐Volume Manufacturing

Schematic illustration of application fields of VCSEL market as of 2021; data taken from various sources.

      Source: Figure by B. D. Padullaparthi and K. Iga [copyright reserved by authors].

Schematic illustration of the modified hype cycle of VCSEL industrialization.

      Source: K. Iga’s observation in the middle of 2020 [copyright reserved by author].

      

      1.5.4 Prospects of VCSEL Market

      The core market includes four major areas: datacom, 3D sensing (mobile), 3D imaging LiDAR (automotive), and industrial heating. In these areas, VCSEL is a proven technology addressing strong societal needs and appears to be gaining a major market share with readily available commercial products.

Schematic illustration of total addressable market of VCSELs at module levels till 2025.

      Source: B. D. Padullaparthi [copyright reserved by author].

      The total addressable market projected for VCSEL’s core and edge areas at module level is expected to be around $40 billion by 2025, where the core part alone is forecast to be about a $24 billion by 2025 market, as shown in Figure 1.20.

      The chip level projection for datacom, telecom, mobile consumer, automotive, medical, industrial, and defense fields is estimated to be about $4.8 billion by 2025, that is 24% of the corresponding module level projections.

      With an increasing number of autonomous cars with LiDARs by 2030, it is anticipated that the market size of the automotive industry will exceed that of consumer electronics, prompting a large number of VCSELs to be used for long‐distance ranging as flash or scan LiDARs. Further, several edge and other markets projected a total reaching $80 billion. When a fraction of 15% (about $8.4 billion) is assumed for add value to core fields, the total addressable market size at module level will be at least about $32.4 B, as shown in Figure 1.20. Some chip level details are given in Chapter 3.

      In summary, it is concluded that VCSEL is finding a vibrant commercial prospect for high‐volume manufacturing and product demands that are further expanding.

      1 1 T. H. Maiman, “Stimulated optical radiation in ruby,” Nature, 187 4736, pp. 493–494 (1960).

      2 2 R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys and R. O. Carlson, “Coherent light emission from GaAs junctions,” Phys. Rev. Lett., Vol. 9, No. 9, pp. 366–368 (1962).

      3 3 T. M. Quist, R. H. Rediker, R. J. Keyes, W. E. Krag, B. Lax, A. L. McWhorter and H. J. Zeigler, “Semiconductor maser of GaAs,” Appl. Phys. Lett., Vol. 1, No. 4, pp. 91–92 (1962).

      4 4 M. I. Nathan, W. P. Dumke, G. Burns, F. H. DillJr. and G. Lasher, “Stimulated emission of radiation from GaAs p‐n junctions,” Appl. Phys. Lett. Vol. 1, No. 3, pp. 62–64 (1962).

      5 5 N. HolonyakJr. and S. F. Bevacqua, “Coherent (visible) light emission from Ga(As1‐xPx) junctions,” Appl. Phys. Lett., Vol. 1, No. 4, pp. 82–83 (1962).

      6 6 I. Hayashi, P.B. Panish, P.W. Foy and S. Sumski, “Junction lasers which operate continuously at room temperature,” Appl. Phys. Lett., Vol. 17, pp. 109–111 (1970).

      7 7 Zh. I. Alferov, V. M. Andreev, E. L. Portnoi and M. K. Trukan, “AlAs‐GaAs heterojunction injection lasers with a low room‐temperature threshold,” Fiz. Tekh. Poluprovodn., Vol. 3, pp. 1328–1332 (1969); Sov. Phys. Semicond., Vol. 3, pp. 1107–1110 (1970).

      8 8 K. Iga and G. Hatakoshi, “Treasure Microbox of Optoelectronics,” Adcom‐Media Co. Ltd. Tokyo, April 25, 2020. (PDF Japanese language version).

      9 9