75 75 Li, S. and Wang, J. (2014). A compact trench‐assisted multi‐orbital‐angular‐momentum multi‐ring fiber for ultrahigh‐density space‐division multiplexing (19 rings × 22 modes). Scientific Reports 4: 3853.
76 76 Dashti, P.Z., Alhassen, F., and Lee, H.P. (2006). Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber. Physical Review Letters 96 (4): 043604.
77 77 Bozinovic, N., Kristensen, P., and Ramachandran, S. (2011). Long‐range fiber‐transmission of photons with orbital angular momentum. In: CLEO: Science and Innovations, CTuB1. Optical Society of America.
78 78 Bozinovic, N., Golowich, S., Kristensen, P., and Ramachandran, S. (2012). Control of orbital angular momentum of light with optical fibers. Optics Letters 37 (13): 2451–2453.
79 79 Ramachandran, S., Bozinovic, N., Gregg, P. et al. (2012). Optical vortices in fibres: A new degree of freedom for mode multiplexing. In: 2012 38th European Conference and Exhibition on Optical Communications, 1–3. IEEE.
80 80 Bozinovic, N., Yue, Y., Ren, Y. et al. (2013). Terabit‐scale orbital angular momentum mode division multiplexing in fibers. Science 340 (6140): 1545–1548.
81 81 Ingerslev, K., Gregg, P., Galili, M. et al. (2018). 12 mode, WDM, MIMO‐free orbital angular momentum transmission. Optics Express 26 (16): 20225–20232.
82 82 Huang, H., Milione, G., Lavery, M.P. et al. (2015). Mode division multiplexing using an orbital angular momentum mode sorter and MIMO‐DSP over a graded‐index few‐mode optical fibre. Scientific Reports 5 (1): 1–7.
83 83 Zhu, L., Wang, A., Chen, S. et al. (2017). Orbital angular momentum mode groups multiplexing transmission over 2.6‐km conventional multi‐mode fiber. Optics Express 25 (21): 25637–25645.
84 84 Wang, A., Zhu, L., Wang, L. et al. (2018). Directly using 8.8‐km conventional multi‐mode fiber for 6‐mode orbital angular momentum multiplexing transmission. Optics Express 26 (8): 10038–10047.
85 85 Zhu, L., Wang, A., Chen, S. et al. (2018). Orbital angular momentum mode multiplexed transmission in heterogeneous few‐mode and multi‐mode fiber network. Optics Letters 43 (8): 1894–1897.
86 86 Li, S. and Wang, J. (2013). Multi‐orbital‐angular‐momentum multi‐ring fiber for high‐density space‐division multiplexing. IEEE Photonics Journal 5 (5): 7101007–7101007.
87 87 Li, S. and Wang, J. (2015). Supermode fiber for orbital angular momentum (OAM) transmission. Optics Express 23 (14): 18736–18745.
88 88 Papathanasopoulos, A., Rahmat‐Samii, Y., Garcia, N., and Chisum, J.D. (2020). A novel collapsible flat‐layered metamaterial gradient‐refractive‐index (GRIN) lens antenna. IEEE Transactions on Antennas and Propagation 68 (3): 1312–1321.
89 89 Wei, X., Liu, C., Niu, L. et al. (2015). Generation of arbitrary order Bessel beams via 3D printed axicons at the terahertz frequency range. Applied Optics 54 (36): 10641–10649.
90 90 Zhang, C. and Ma, L. (2016). Millimetre wave with rotational orbital angular momentum. Scientific Reports 6 (1): 1–8.
91 91 L. Zhu, X. Wei, J. Wang, et al. (2014). Experimental demonstration of basic functionalities for 0.1‐THz orbital angular momentum (OAM) communications, Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper M3K.
92 92 Byun, W.‐J., Lee, Y.‐S., Kim, B.S. et al. (2015). Simple generation of orbital angular momentum modes with azimuthally deformed Cassegrain subreflector. Electronics Letters 51 (19): 1480–1482.
93 93 Mari, E., Spinello, F., Oldoni, M. et al. (2014). Near‐field experimental verification of separation of OAM channels. IEEE Antennas and Wireless Propagation Letters 14: 556–558.
94 94 Byun, W.J., Kim, K.S., Kim, B.S. et al. (2016). Multiplexed Cassegrain reflector antenna for simultaneous generation of three orbital angular momentum (OAM) modes. Scientific Reports 6: 27339.
95 95 Cheng, L., Hong, W., and Hao, Z.‐C. (2014). Generation of electromagnetic waves with arbitrary orbital angular momentum modes. Scientific Reports 4 (1): 1–5.
96 96 Qin, F., Wan, L., Li, L. et al. (2018). A transmission metasurface for generating OAM beams. IEEE Antennas and Wireless Propagation Letters 17 (10): 1793–1796.
97 97 Hui, X., Zheng, S., Hu, Y. et al. (2015). Ultralow reflectivity spiral phase plate for generation of millimeter‐wave OAM beam. IEEE Antennas and Wireless Propagation Letters 14: 966–969.
98 98 Chen, Y., Zheng, S., Li, Y. et al. (2015). A flat‐lensed spiral phase plate based on phase‐shifting surface for generation of millimeter‐wave OAM beam. IEEE Antennas and Wireless Propagation Letters 15: 1156–1158.
99 99 A. Bennis, R. Niemiec, C. Brousseau, et al. (2013). Flat plate for OAM generation in the millimeter band, 2013 7th European Conference on Antennas and Propagation (EuCAP). IEEE, pp. 3203–3207.
100 100 Niemiec, R., Brousseau, C., Mahdjoubi, K. et al. (2014). Characterization of an OAM flat‐plate antenna in the millimeter frequency band. IEEE Antennas and Wireless Propagation Letters 13: 1011–1014.
101 101 Tamburini, F., Mari, E., Thidé, B. et al. (2011). Experimental verification of photon angular momentum and vorticity with radio techniques. Applied Physics Letters 99 (20): 204102.
102 102 Bai, Q., Tennant, A., and Allen, B. (2014). Experimental circular phased array for generating OAM radio beams. Electronics Letters 50 (20): 1414–1415.
103 103 Liu, K., Liu, H., Qin, Y. et al. (2016). Generation of OAM beams using phased array in the microwave band. IEEE Transactions on Antennas and Propagation 64 (9): 3850–3857.
104 104 Kang, L., Li, H., Zhou, J. et al. (2019). A mode‐reconfigurable orbital angular momentum antenna with simplified feeding scheme. IEEE Transactions on Antennas and Propagation 67 (7): 4866–4871.
105 105 Liu, Q., Chen, Z.N., Liu, Y. et al. (2018). Circular polarization and mode reconfigurable wideband orbital angular momentum patch array antenna. IEEE Transactions on Antennas and Propagation 66 (4): 1796–1804.
106 106 Zhao, M., Gao, X., Xie, M. et al. (2018). Generation of coupled radio frequency orbital angular momentum beam with an optical‐controlled circular antenna array. Optics Communications 426: 126–129.
107 107 Gong, Y., Wang, R., Deng, Y. et al. (2017). Generation and transmission of OAM‐carrying vortex beams using circular antenna array. IEEE Transactions on Antennas and Propagation 65 (6): 2940–2949.
108 108 Yuan, T., Cheng, Y., Wang, H.‐Q., and Qin, Y. (2016). Generation of OAM radio beams with modified uniform circular array antenna. Electronics Letters 52 (11): 896–898.
109 109 Lin, M., Gao, Y., Liu, P., and Liu, J. (2017). Theoretical analyses and design of circular array to generate orbital angular momentum. IEEE Transactions on Antennas and Propagation 65 (7): 3510–3519.
110 110 F. E. Mahmouli and S. Walker. (2012). Orbital angular momentum generation in a 60GHz wireless radio channel, 2012 20th Telecommunications Forum (TELFOR), Belgrade, Serbia: IEEE, (20–22 November 2012).
111 111 Bazhenov, V.Y., Vasnetsov, M., and Soskin, M. (1990). Laser beams with screw dislocations in their wavefronts. JETP Letter 52 (8): 429–431.
112 112 Heckenberg, N., McDuff, R., Smith, C., and White, A. (1992). Generation of optical phase singularities by computer‐generated holograms. Optics Letters 17 (3): 221–223.
113 113 Arlt, J., Dholakia, K., Allen, L., and Padgett, M. (1998). The production of multiringed Laguerre–Gaussian modes by computer‐generated holograms. Journal of Modern Optics 45 (6): 1231–1237.
114 114 Meng, X.‐S., Wu, J.‐J., Wu, Z.‐S. et al. (2018). Design of multiple‐polarization reflectarray for orbital angular momentum wave in radio frequency. IEEE Antennas and Wireless