Change Detection and Image Time-Series Analysis 1. Группа авторов. Читать онлайн. Newlib. NEWLIB.NET

Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Программы
Год издания: 0
isbn: 9781119882251
Скачать книгу
building index. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(1), 105–115.

      Hussain, M., Chen, D., Cheng, A., Wei, H., Stanley, D. (2013). Change detection from remotely sensed images: From pixel-based to object-based approaches. ISPRS Journal of Photogrammetry and Remote Sensing, 80, 91–106 [Online]. Available at: http://www.sciencedirect.com/science/article/pii/S0924271613000804.

      Kaszta, A., Van De Kerchove, R., Ramoelo, A., Cho, M.A., Madonsela, S., Mathieu, R., Wolff, E. (2016). Seasonal separation of African savanna components using WorldView-2 imagery: A comparison of pixel- and object-based approaches and selected classification algorithms. Remote Sensing, 8(9) [Online]. Available at: https://www.mdpi.com/2072-4292/8/9/763.

      Keshava, N. (2004). Distance metrics and band selection in hyperspectral processing with applications to material identification and spectral libraries. IEEE Transactions on Geoscience and Remote Sensing, 42(7), 1552–1565.

      Khan, S.H., He, X., Porikli, F., Bennamoun, M. (2017). Forest change detection in incomplete satellite images with deep neural networks. IEEE Transactions on Geoscience and Remote Sensing, 55(9), 5407–5423.

      Leichtle, T., Geiß, C., Wurm, M., Lakes, T., Taubenböck, H. (2017). Unsupervised change detection in VHR remote sensing imagery – An object-based clustering approach in a dynamic urban environment. International Journal of Applied Earth Observation and Geoinformation, 54, 15–27 [Online]. Available at: http://www.sciencedirect.com/science/article/pii/S0303243416301490.

      Li, H., Celik, T., Longbotham, N., Emery, W.J. (2015). Gabor feature based unsupervised change detection of multitemporal SAR images based on two-level clustering. IEEE Geoscience and Remote Sensing Letters, 12(12), 2458–2462.

      Liu, S. and Du, P. (2010). Object-oriented change detection from multi-temporal remotely sensed images. Geographic Object-Based Image Analysis, number XXXVIII-4/C7.

      Liu, S., Bruzzone, L., Bovolo, F., Du, P. (2012). Unsupervised hierarchical spectral analysis for change detection in hyperspectral images. 4th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), pp. 1–4.

      Liu, S., Bruzzone, L., Bovolo, F., Zanetti, M., Du, P. (2015). Sequential spectral change vector analysis for iteratively discovering and detecting multiple changes in hyperspectral images. IEEE Transactions on Geoscience and Remote Sensing, 53(8), 4363–4378.

      Liu, S., Du, Q., Tong, X., Samat, A., Bruzzone, L., Bovolo, F. (2017a). Multiscale morphological compressed change vector analysis for unsupervised multiple change detection. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(9), 4124–4137.

      Liu, S., Tong, X., Bruzzone, L., Du, P. (2017b). A novel semisupervised framework for multiple change detection in hyperspectral images. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 173–176.

      Liu, J., Chen, K., Xu, G., Li, H., Yan, M., Diao, W., Sun, X. (2019a). Semi-supervised change detection based on graphs with generative adversarial networks. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 74–77.

      Liu, S., Du, Q., Tong, X., Samat, A., Bruzzone, L. (2019b). Unsupervised change detection in multispectral remote sensing images via spectral-spatial band expansion. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(9), 3578–3587.

      Liu, S., Marinelli, D., Bruzzone, L., Bovolo, F. (2019c). A review of change detection in multitemporal hyperspectral images: Current techniques, applications, and challenges. IEEE Geoscience and Remote Sensing Magazine, 7(2), 140–158.

      Liu, S., Hu, Q., Tong, X., Xia, J., Du, Q., Samat, A., Ma, X. (2020a). A multi-scale superpixel-guided filter feature extraction and selection approach for classification of very-high-resolution remotely sensed imagery. Remote Sensing, 12(5) [Online]. Available at: https://www.mdpi.com/2072-4292/12/5/862.

      Liu, S., Zheng, Y., Dalponte, M., Tong, X. (2020b). A novel fire index-based burned area change detection approach using Landsat-8 OLI data. European Journal of Remote Sensing, 53(1), 104–112 [Online]. Available at: https://doi.org/10.1080/22797254.2020.1738900.

      Lu, D., Mausel, P., Brondízio, E., Moran, E. (2004). Change detection techniques. International Journal of Remote Sensing, 25(12), 2365–2401 [Online]. Available at: https://doi.org/10.1080/0143116031000139863.

      Malila, W. (1980). Change vector analysis: An approach for detecting forest changes with landsat. LARS Symposia, Purdue University, West Lafayette, IN.

      Mou, L., Bruzzone, L., Zhu, X.X. (2019). Learning spectral-spatial-temporal features via a recurrent convolutional neural network for change detection in multispectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 57(2), 924–935.

      Mura, M.D., Benediktsson, J.A., Bovolo, F., Bruzzone, L. (2008). An unsupervised technique based on morphological filters for change detection in very high resolution images. IEEE Geoscience and Remote Sensing Letters, 5(3), 433–437.

      Nielsen, A.A. (2007). The regularized iteratively reweighted mad method for change detection in multi- and hyperspectral data. IEEE Transactions on Image Processing, 16(2), 463–478.

      Nielsen, A.A. and Canty, M.J. (2008). Kernel principal component analysis for change detection [Online]. Available at: http://www2.compute.dtu.dk/pubdb/pubs/5667-full.html.

      Okyay, U., Telling, J., Glennie, C.L., Dietrich, W.E. (2019). Airborne lidar change detection: An overview of earth sciences applications. Earth-Science Reviews, 198, 102929 [Online]. Available at: http://www.sciencedirect.com/science/article/pii/S0012825218306470.

      Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62–66.

      Saha, S., Bovolo, F., Bruzzone, L. (2019). Unsupervised deep change vector analysis for multiple-change detection in VHR images. IEEE Transactions on Geoscience and Remote Sensing, 57(6), 3677–3693.

      Singh, A. (1989). Review article digital change detection techniques using remotely-sensed data. International Journal of Remote Sensing, 10(6), 989–1003 [Online]. Available at: https://doi.org/10.1080/01431168908903939.

      Song, X.P., Hansen, M.C., Stehman, S.V., Potapov, S.V., Tyukavina, A., Vermote, E.F., Townshend, J.R. (2018). Global land change from 1982 to 2016. Nature, 560, 639–643.

      Tong, X., Pan, H., Liu, S., Li, B., Luo, X., Xie, H., Xu, X. (2020). A novel approach for hyperspectral change detection based on uncertain area analysis and improved transfer learning. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 2056–2069.

      Wang, X., Liu, S., Du, P., Liang, H., Xia, J., Li, Y. (2018). Object-based change detection in urban areas from high spatial resolution images based on multiple features and ensemble learning. Remote Sensing, 10(2) [Online]. Available at: https://www.mdpi.com/2072-4292/10/2/276.

      Wei,