Finally, another sensory receptor, the abdominal sense organ (ASO), first described in scallops but now reported from at least 19 bivalve families (Haszprunar 1983), is a small piece of tissue situated on the adductor muscle near the anus. The receptor epithelium contains ciliated sensory cells and mucocytes, the former making up 90% of the total cell number (details in Zhadan et al. 2004). While some believe that the ASO functions in the regulation of water flow within the pallial cavity (Beninger & Le Pennec 2006), others have suggested that it may be involved in the perception of waterborne vibrations – similar in some respects to the acoustic lateral line system in fish – and Zhadan (2005) has indeed shown that the scallops Mizuhopecten yessoensis and Chlamys swifti are sensitive to ultrasonic vibrations in the range 30–1000 Hz. This type of sensory input could give warning of the approach of a predator.
References
1 Addadi, L., Joester, D., Nudelman, F. & Weiner, S. (2006) Mollusk shell formation: a source of new concepts for understanding biomineralization processes. Chemistr – A European Journal, 12, 980–987.
2 Aguirre, M.L., Perez, S.I. & Sirch, Y.N. (2006) Morphological variability of Brachidontes Swainson (Bivalvia, Mytilidae) in the marine Quaternary of Argentina (SW Atlantic). Palaeogeography, Palaeoclimatology, Palaeoecology, 239, 100–125.
3 Akester, R.J. & Martel, A.L. (2000) Shell shape, dysodont tooth morphology, and hinge‐ligament thickness in the bay mussel Mytilus trossulus correlate with wave exposure. Canadian Journal of Zoology, 78, 240–253.
4 Akşit, D. & Falakali Mutaf, B. (2014) The gill morphology of the date mussel Lithophaga lithophaga (Bivalvia: Mytilidae). Turkish Journal of Zoology, 38, 61–67.
5 Alyakrinskaya, I.O. (2001) The dimensions, characteristics and functions of the crystalline style of mollusks. Biological Bulletin, 28, 523–535.
6 Anderson, T.H., Yu, J., Estrada, A., Hammer, M.U., Waite, J.H. & Israelachvili, J.N. (2010) The contribution of DOPA to substrate–peptide adhesion and internal cohesion of mussel‐inspired synthetic peptide films. Advanced Functional Materials, 20, 4196–4205.
7 Arnold, A. A., Byette, F., Séguin‐Heine, M.O., LeBlanc,A., Sleno, L., Tremblay, R. et al. (2010) Solid‐state NMR structure determination of whole anchoring threads from the blue mussel Mytilus edulis. Biomacromolecules, 14, 132−141.
8 Avelar, W.E.P., Mantelatto, F.L.M., Tomazelli, A.C., Silva, D.M.L., Shuhama, T. & Lopes, J.L.C. (2000) The marine mussel Perna perna (Mollusca, Bivalvia, Mytilidae) as an indicator of contamination by heavy metals in the Ubatuba Bay, São Paulo, Brazil. Water, Air, and Soil Pollution, 118, 65–72.
9 Babarro, J.M.F. & Carrington, E. (2011) Byssus secretion of Mytilus galloprovincialis: effect of site at macro‐ and micro‐geographical scales within Ría de Vigo (NW Spain). Marine Ecology Progress Series, 435, 125–140.
10 Babarro, J.M.F. & Carrington, E. (2013) Attachment strength of the mussel Mytilus galloprovincialis: effect of habitat and body size. Journal of Experimental Marine Biology and Ecology, 443, 188–196.
11 Bandara, N., Zeng, H. & Wu, J. (2013) Marine mussel adhesion: biochemistry, mechanisms, and biomimetics. Journal of Adhesion Science and Technology, 27, 2139–2162.
12 Barnes, R.S.K., Callow, P. & Olive, P.J.W. (1993) The Invertebrates: A New Synthesis, 2nd edn. Blackwell Scientific Publications, Oxford.
13 Bau, M., Balan, S., Schmidt, K. & Koschinsky, A. (2010) Rare earth elements in mussel shells of the Mytilidae family as tracers for hidden and fossil high‐temperature hydrothermal systems. Earth and Planetary Science Letters, 299, 310–316.
14 Bell, E.C. & Gosline, J.M. (1996) Mechanical design of mussel byssus: material yield enhances attachment strength. Journal of Experimental Biology, 199, 1005–1017.
15 Bell, E.C. & Gosline, J.M. (1997) Strategies for life in flow: tenacity, morphometry, and probability of dislodgment of two Mytilus species. Marine Ecology Progress Series, 159, 197–208.
16 Bellotto, V.R. & Miekeley, N. (2007) Trace metals in mussel shells and corresponding soft tissue samples: a validation experiment for the use of Perna perna shells in pollution monitoring. Analytical and Bioanalytical Chemistry, 389, 769–776.
17 Beninger, P.G. & Dufour, S.C. (2000) Evolutionary trajectories of a redundant feature: lessons from bivalve gill abfrontal cilia and mucocyte distributions. In: The Evolutionary Biology of the Bivalvia (eds E.M. Harper, J.D. Taylor & J.A. Crame), pp. 273–278. Geological Society, London.
18 Beninger, P.G. & Le Pennec, M. (2006) Structure and function in scallops. In: Scallops: Biology, Ecology and Aquaculture, 2nd edn (eds S.E. Shumway & G.J. Parsons), pp. 123–227. Elsevier Science Publishers B.V., Amsterdam.
19 Beninger, P.G. & Le Pennec, M. (2016) Scallop structure and function. In: Scallops: Biology, Ecology Aquaculture and Fisheries, 3rd edn. (eds S.E. Shumway & G.J. Parsons), pp. 85–159. Elsevier Science Publishers B.V., Amsterdam.
20 Beninger, P.G., Donval, A. & Le Pennec, M. (1995) The osphradium in Placopocten magellanicus and Pecten maximus (Bivalvia, Pectinidae): histology, ultrastructure, and implications for spawning synchronization. Marine Biology, 123, 121–129.
21 Bjärnmark, N.A., Yarra, T., Churcher, A.M., Felix, R.C., Clark, M.S. & Power, D.M. (2016) Transcriptomics provides insight into Mytilus galloprovincialis (Mollusca: Bivalvia) mantle function and its role in biomineralisation. Marine Genomics, 27, 37–45.
22 Boisson, F., Cotret, O. & Fowler, S.W. (1998) Bioaccumulation and retention of lead in the mussel Mytilus galloprovincialis following uptake from seawater. Science of the Total Environment, 222, 55–61.
23 Bonel, N., Solari, L.C. & Lorda, J. (2013) Differences in density, shell allometry and growth between two populations of Limnoperna fortunei (Mytilidae) from the Río De La Plata Basin, Argentina. Malacologia, 56, 43–58.
24 Bouhlel, Z., Genard, B., Ibrahim, N., Carrington, E., Babarro, J.M.F., Lok, A. et al. (2017) Interspecies comparison of the mechanical properties and biochemical composition of byssal threads. Journal of Experimental Biology, 220, 984–994.
25 Bower, S. M. (2009) Synopsis of infectious diseases and parasites of commercially exploited shellfish. Available at: https://www.dfo‐mpo.gc.ca/science/aah‐saa/diseases‐maladies/index‐eng.html (accessed 28 May 2021).
26 Brazee, S.L. & Carrington, E. (2006) Interspecific comparison of the mechanical properties of mussel byssus. Biological Bulletin, 211, 263–274.
27 Briones, C., Rivadeneira, M.M., Fernández, M. & Guiñez, R. (2014) Geographical variation of shell thickness in the mussel Perumytilus purpuratus along the Southeast Pacific coast. Biological Bulletin, 227, 221–231.
28 Brodsky, S. (2011) Cold temperature effects on byssal thread production by the native mussel Geukensia demissa versus the non‐native mussel Mytella charruana. The University of Central Florida Undergraduate Research Journal, 5, 1–10.
29 Budelmann, B.U. (1988) Morphological diversity of equilibrium receptor systems in aquatic invertebrates. In: Sensory Biology of Aquatic Animals (eds J. Atema, R.R. Fay, A.N. Popper & W.N. Tavolga), pp. 757–782. Springer‐Verlag, New York.
30 Carrington, E., Moeser, G.M., Thompson, S.B., Coutts, L.C. & Craig, C.A. (2008) Mussel attachment on rocky shores: the effect of flow on byssus production. Integrative and Comparative Biology, 48, 801–807.
31 Carrington, E., Waite, J.H., Sarà, G. & Sebens, K.P. (2015) Mussels as a model system for integrative ecomechanics. Annual Review of Marine Science, 7, 443–469.
32 Cha, H.J., Hwang, D.S. &