Organic Corrosion Inhibitors. Группа авторов. Читать онлайн. Newlib. NEWLIB.NET

Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Техническая литература
Год издания: 0
isbn: 9781119794509
Скачать книгу
Chafiq, M., Chaouiki, A., Damej, M. et al. (2020). Bolaamphiphile‐class surfactants as corrosion inhibitor model compounds against acid corrosion of mild steel. Journal of Molecular Liquids 309: 113070.

      9 9 Lgaz, H., Salghi, R., Masroor, S. et al. (2020). Assessing corrosion inhibition characteristics of hydrazone derivatives on mild steel in HCl: Insights from electronic‐scale DFT and atomic‐scale molecular dynamics. Journal of Molecular Liquids 308: 112998.

      10 10 Zheng, L., Wan, Z., Gao, N., and Zhang, C. (2012). Refining corrosion monitoring technology application and device progress. Journal of Petroleum Chemical Corrosion and Protection 2: 47–50.

      11 11 Yu, Z. and Meng, X. (2012). Corrosion monitoring technology and its application in oil and gas field. Pipeline Technology and Equipment 2: 48–49.

      12 12 Yang, X., Rao, J., and Wang, Y. (2011). Application of online monitoring technology in petrochemical industry. Journal of Petroleum Chemical Corrosion and Protection 3: 40–42.

      13 13 Chapter 1, 2000 ASM International. All Rights Reserved. Corrosion: Understanding the Basics (#06691G).

      14 14 https://corrosiondoctors.org/Principles/Cost.htm#:~:text=Within%20the%20total%20cost%20of,of%20available%20corrosion%20management%20techniques.

      15 15 Rose, J. and Barshinger, J. (1998). Using ultrasonic guided wave mode cutoff for corrosion detection and classification. Materials Science, 1998 Ultrasonics Symposium. Proceedings (Cat. No. 98CH36102) 1: 851–854.

      16 16 Pei, J., Yousuf, M., Degertekin, F. et al. (21 April 2009) (1996). Lamb wave tomography and its application in pipe erosion/corrosion monitoring. Research in Nondestructive Evaluation 8: 189–197. http://dx.doi.org/10.1007/ BF02433949.

      17 17 Hines, J. (1968). Industrial Corrosion Monitoring; Committee on Corrosion. London: Department of Industry H.M.S.O.

      18 18 Rothwell, N. and Tullmin, M. (2000). The Corrosion Monitoring Handbook. Kingham, Oxford, UK: Coxmoor Publishing Co.

      19 19 . Glossary, National Corrosion Service. Teddington, London, UK: National Physical Laboratory (NPL).

      20 20 Standard Guide for Conducting Corrosion Tests in Field Applications; ASTM G4–01, ASTM International, 2005.

      21 21 Field Corrosion Evaluation Using Metallic Test Specimens; RPO497–2004; NACE International: Houston, TX, USA, 2008.

      22 22 Dean, S.W. (1987). In‐Service Monitoring‖, ASM Handbook, vol. 13, 197. ASM International.

      23 23 M. Mobin and S. Masroor, Adsorption and corrosion inhibition behavior of schiff base‐based cationic gemini surfactant on mild steel in formic acid, Journal of Dispersion Science and Technology, 35:535–543, 2014, 0193‐2691 print=1532‐2351, https://doi.org/10.1080/01932691.2013.799435.

      24 24 Masroor, S., Mobin, M., Singh, A.K. et al. (2020). Aspartic di‐dodecyl ester hydrochloride acid and its ZnO‐NPs derivative, as ingenious green corrosion defiance for carbon steel through theoretical and experimental access. SN Applied Sciences 2: 144. https://doi.org/10.1007/s42452‐019‐1515‐z.

      25 25 Publication EFC4 (1990). Guidelines for Electrochemical Corrosion Measurements. European Federation of Corrosion.

      26 26 Shrier, 1978; Eg&G Application note, 1982.

      27 27 Martin R. Dynamic optimization of chemical additives in a water treatment system. US Patent 6419817, 2000.

      28 28 https://www.alspi.com/lprintro.htm.

      29 29 Rathod, N.G. and Moharana, N.C. (2015). Advanced methods of corrosion monitoring‐ a review. IJRET: International Journal of Research in Engineering and Technology 04 (13) ICISE‐2015, Dec‐ eISSN: 2319‐1163, pISSN: 2321‐7308.

      30 30 Ropital, F. (2011). 15 ‐ Environmental Degradation in Hydrocarbon Fuel Processing Plant: Issues and Mitigation, 437–462. Advances in Clean Hydrocarbon Fuel Processing, Science and Technology, Woodhead Publishing Series in Energy https://doi.org/10.1533/9780857093783.5.437.

      31 31 Stern, M. and Geary, A.L. (1957). Electrochemical polarization. Journal of the Electrochemical Society 104 (1): 56.

      32 32 Song, H.W. and Saraswathy, V. (2007). Corrosion monitoring of reinforced concrete structures – a review. International Journal of Electrochemical Science 2: 1–28.

      33 33 Zaki, A., Chai, H.K., Aggelis, G.D., and Alver, N. (2015). Non destructive evaluation for corrosion monitoring in concrete: a review and capability of acoustic emission technique. Sensors 15 (8): 19069–19101. ISSN 1424‐8220.

      34 34 Burkle, W.S. (1989). Application of tangential radiographic technique for evaluating pipe system erosion/corrosion. Mater Eval 47 (10): 1186–1188.

      35 35 Zecherpel U. Corrosion and Deposit Evaluation in Large Diameter Pipes by Radiography. Internal report of the second RCM of the CRP, IAEA, Istanbul, Turkey, March 2004.

      36 36 ASNT (2002). Nondestructive Testing Handbook—Radiographic Testing, vol. 4. USA: American Society for Nondestructive Testing, Inc.

      37 37 Krolicki, R.P. (1997). Internal corrosion examination and wall thickness measurement of pipe by radiographic method. Mater Eval 35 (2): 32–33.

      38 38 Ekinci, S., Bas, N., Aksu, M. et al. (1998). Corrosion and deposit measurements in pipes by radiographic technique. Insight 40 (9): 602–605.

      39 39 Rheinlander, J. and Christiansen, H. (1995). Using film density variations for determination of pipe thickness variation in gamma‐ray radiography. Insight 37 (9): 691–694.

      40 40 Kajiwara, G. (2000). Examination of the X‐ray piping diagnostic system using EGS4 (examination of the film and iron rust). In: Proceedings of the Second International Workshop on EGS, 199–208. Japan: Tsukuba.

      41 41 Willems, P., Vaessen, B., Hueck, W., and Ewert, U. (1999). Application of CR for corrosion and wall thickness measurements. Insight 41 (10): 635–637.

      42 42 Marstboom, N. (1999). Computed radiography for corrosion and wall thickness measurements. Insight 41 (5): 308–309.

      43 43 Edalati, K., Rastkhah, N., Kermani, A. et al. (2006). The use of radiography for thickness measurement and corrosion monitoring in pipes. International Journal of Pressure Vessels and Piping 83: 736–741.

      44 44 He, Y. (2016). Corrosion Monitoring, Reference Module in Materials Science and Materials Engineering. Hamilton, ON, Canada: Elsevier Inc, Natural Resources Canada https://doi.org/10.1016/B978‐0‐12‐803581‐8.03460‐3.

      45 45 P.W. van Andel, “Eddy Current Inspection Technique”, US patent nr 6,291,992 (September 2001).

      46 46 P.C.N. Crouzen, “Method for inspecting an object of electrically conducting material”, US patent nr 6,570,379 (May 2003).

      47 47 Crouzen, P. and Munns, I. (2006). Pulsed Eddy Current Corrosion Monitoring in Refineries and Oil Production Facilities –Experience at Shell. Amsterdam, The Netherlands, NDT.net Issue: 2006‐11, Publication: 9th European Conference on NDT ‐ September 2006 ‐ Berlin (Germany) (ECNDT 2006), Session: Chemical and Petrochemical: Shell Global Solutions International https://www.ndt.net/search/docs.php3?id=3634.

      48 48 Abdalla, A.N., Farai, M.A., and Samsuri, D. (2019). Challenges in improving the performance of eddy current testing: review. Measurement and Control 52 (12): 46–64.

      49 49 IAEA (2005). Development of Protocols for Corrosion and Deposits Evaluation in Pipes by Radiography. Vienna: IAEA‐TECDOC‐1445.

      50 50 Vavilov, V.P. and Chulkov, A.O. (2012). Detecting corrosion in thick