Introduction to Nanoscience and Nanotechnology. Chris Binns. Читать онлайн. Newlib. NEWLIB.NET

Автор: Chris Binns
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Отраслевые издания
Год издания: 0
isbn: 9781119172253
Скачать книгу
1.2, which shows the entire distance range encompassing present‐day scientific knowledge, plotted on a logarithmic scale, from the observable universe (1027 m) to the Planck scale (10−35 m, see Chapter 10). It is seen that nanoscience occupies a tiny sliver somewhere near the middle and doesn't immediately strike one as being of interest, but to base a field of science around it suggests that there is something special about the nanometer scale – so what is it?

image

      Source: Reproduced with the permission of the American Institute of Physics from M. D. Upward et al. [1].

image

      Source: The Universe image is from UCL Mathematical and Physical sciences and reproduced under creative commons 2.0 license. The solar system and atomic nucleus images are reproduced under creative commons 3.0 license.

      Our direct experience in the macroscopic world suggests that matter is continuous and thus with nothing but our eyes for sensors, the original suggestion that matter is made from continuous basic elements such as earth, fire, air, and water seems reasonable. In fact, there are subtle indications of underlying invisible particles of matter, for example, in a dusty room traversed by shafts of sunlight, the dust particles dance around due to the motion of something invisible. Mostly, this is microscopic air currents but the glittering of the smallest particles is due to random collisions from large numbers of individual air molecules and is known as Brownian motion (see Chapter 7, Section 7.2).

image

      Source: Odysses, https://commons.wikimedia.org/wiki/File:Bust_of_an_unknown_Greek_‐_Museo_archeologico_nazionale_di_Napoli.jpg.

      Meanwhile, focusing on atoms, one could argue that the basic philosophy outlined above, which led to their being proposed, means that you should really attribute the a‐tomon to more fundamental constituents of atoms, such as electrons and quarks. There is a good reason to stick with atoms, however, since we are talking about constituents of materials and if we pick on a particular material, say copper, the smallest indivisible unit of “copperness” is the copper atom. If we divide a copper atom in two we get two atoms of different materials.