Biosorption for Wastewater Contaminants. Группа авторов. Читать онлайн. Newlib. NEWLIB.NET

Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Биология
Год издания: 0
isbn: 9781119737612
Скачать книгу
R., Saxena, R.K., and Gupta, R. (2002). Fermentation waste of Aspergillus terreus: a potential copper biosorbent. World Journal of Microbiology and Biotechnology 18 (5): 397–401. doi:10.1023/A:1015540921432.

      34 Gupta, R., Saxena, R., Mohapatra, H., and Ahuja, P. (2002). Microbial variables for bioremediation of heavy metals from industrial effluents. In: Progress in Industrial Microbiology (ed. V.P. Singh and R.D. Stapleton), vol. 36: 189–229. Elsevier.

      35 Gupta, V.K., Rastogi, A., and Nayak, A. (2010). Biosorption of nickel onto treated alga (Oedogonium hatei): Application of isotherm and kinetic models. Journal of Colloid and Interface Science 342 (2): 533–539. doi:10.1016/j.jcis.2009.10.074.

      36 Haluk Ceribasi, I. and Yetis, U. (2004). Biosorption of Ni(ii) and Pb(ii) by Phanerochaete chrysosporium from a binary metal system – kinetics. Water SA 27 (1): 15–20. doi:10.4314/wsa.v27i1.5004.

      37 Hlihor, R.M., Bulgariu, L., Sobariu, D.L. et al. (2014). Recent advances in biosorption of heavy metals: Support tools for biosorption equilibrium, kinetics and mechanism. Revue Roumaine de Chimie 59: 527–538.

      38 Huang, W. and Liu, Z.‐M. (2013). Biosorption of Cd (II)/Pb(II) from aqueous solution by biosurfactant‐producing bacteria: isotherm kinetic characteristic and mechanism studies. Colloids Surf B 105: 113–119.

      39  Ibrahim, W.M. and Mutawie, H.H. (2013). Bioremoval of heavy metals from industrial effluent by fixed‐bed column of red macroalgae. Toxicology and Industrial Health 29 (1): 38–42. doi:10.1177/0748233712445044.

      40 Inoue, K., Parajuli, D., Ghimire, K. et al. (2017). Biosorbents for removing hazardous metals and metalloids. Materials 10 (8): 857. doi:10.3390/ma10080857.

      41 Jaishankar, M., Tseten, T., Anbalagan, N. et al. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology 7 (2): 60–72. doi:10.2478/intox‐2014‐0009.

      42 Javaid, A., Bajwa, R., Shafique, U. et al. (2011). Removal of heavy metals by adsorption on Pleurotus ostreatus. Biomass and Bioenergy 35 (5): 1675–1682. doi:10.1016/j.biombioe.2010.12.035.

      43 Kanamarlapudi, S.L.R.K., Chintalpudi, V.K., and Muddada, S. (2018). Application of biosorption for removal of heavy metals from wastewater. In: Biosorption (ed. J. Derco and B. Vrana). InTech. doi: 10.5772/intechopen.77315.

      44 Kazy, S.K., Das, S.K., and Sar, P. (2006). Lanthanum biosorption by a Pseudomonas sp.: equilibrium studies and chemical characterization. Journal of Industrial Microbiology and Biotechnology 33 (9): 773–783. doi:10.1007/s10295‐006‐0108‐1.

      45 Kizilkaya, B., Tekinay, A.A., and Dilgin, Y. (2010). Adsorption and removal of Cu (II) ions from aqueous solution using pretreated fish bones. Desalination 264: 37–47.

      46 Kulkarni, S.J. (2014). Use of biotechnology for synthesis of various products from different feedstocks – a review. Int. J. Adv. Res. Bio‐Technol. 2: 1–3.

      47 Lee, Y.‐C. and Chang, S.‐P. (2011). The biosorption of heavy metals from aqueous solution by Spirogyra and Cladophora filamentous macroalgae. Bioresource Technology 102 (9): 5297–5304. doi:10.1016/j.biortech.2010.12.103.

      48 Leitão, A.L. (2009). Potential of Penicillium Species in the Bioremediation Field. International Journal of Environmental Research and Public Health 6 (4): 1393–1417. doi:10.3390/ijerph6041393.

      49 Luo, J., Xiao, X., and Luo, S.‐L. (2010). Biosorption of cadmium(II) from aqueous solutions by industrial fungus Rhizopus cohnii. Transactions of Nonferrous Metals Society of China 20 (6): 1104–1111. doi:10.1016/S1003‐6326(09)60264‐8.

      50 Lupea, M., Bulgariu, L., and Macoveanu, M. (2012). Biosorption of Cd(II) from aqueous solution on marine green algae biomass. Environmental Engineering and Management Journal 11 (3): 607–615. doi:10.30638/eemj.2012.076.

      51 Macek, T. and Mackova, M. (2011). Potential of biosorption technology. In: Microbial Biosorption of Metals (ed.: Kotrba, M. Mackova, and T. Macek). Springer. doi:10.1007/978‐94‐007‐0443‐5_2.

      52 Mamisahebei, S., Khaniki, G.R.J., Torabian, A. et al. (2007). Removal of arsenic from an aqueous solution by pretreated waste tea fungal biomass. Journal of Environmental Health Science and Engineering 4 (2): 85–92.

      53 Mapolelo, M. (2004). Trace enrichment of metal ions in aquatic environments by Saccharomyces cerevisiae. Talanta 64 (1): 39–47. doi:10.1016/j.talanta.2003.10.058.

      54 Moat, A.G., Foster, J.W., and Spector, M.P. (2002). Microbial Physiology. New York: Wiley‐Liss.

      55 Mohan, D. and Singh, K.P. (2002). Single‐ and multi‐component adsorption of cadmium and zinc using activated carbon derived from bagasse‐an agricultural waste. Water Res 36: 2304–2318.

      56  Mohan, D., Singh, K.P., and Singh, V.K. (2006). Chromium (III) removal from wastewater using low cost activated carbon derived from agriculture waste material and activated carbon fabric filter. J Hazard Mater 135: 280–295.

      57 Monsieurs P., Hobman J., Vandenbussche G. et al. (2015). Response of Cupriavidus metallidurans CH34 to Metals. In: Metal Response in Cupriavidus metallidurans (ed. M. Mergeay and R. Van Houdt), 45–89. Springer Briefs in Molecular Science. Springer. doi:10.1007/978‐3‐319‐20594‐6_3.

      58 Montanher, S.F., Oliveira, E.A., and Rollemberg, M.C. (2005). Removal of metal ions from aqueous solutions by sorption onto rice bran. J Hazard Mater 117: 207–211.

      59 Mrvčić, J., Stanzer, D., Šolić, E. et al. (2012). Interaction of lactic acid bacteria with metal ions: opportunities for improving food safety and quality. World Journal of Microbiology and Biotechnology 28 (9): 2771–2782. doi:10.1007/s11274‐012‐1094‐2.

      60 Mulligan, C., Yong, R., and Gibbs, B. (2001). Remediation alternative treatment option for heavy metal bearing wastewaters: A review. Bioresource Technology 53: 195–206.

      61 Muraleedharan, T.R., Iyengar, L., and Venkobachar, C. (1991). Biosorption: An attractive alternative for metal removal and recovery. Current Science 61 (6): 379–385.

      62 Murphy, V., Hughes, H., and McLoughlin, P. (2008). Comparative study of chromium biosorption by red, green and brown seaweed biomass. Chemosphere 70 (6): 1128–1134. doi:10.1016/j.chemosphere.2007.08.015.

      63 Mustapha, M.U. and Halimoon, N. (2015). Microorganisms and biosorption of heavy metals in the environment: a review paper. Journal of Microbial and Biochemical Technology 07 (05). doi:10.4172/1948‐5948.1000219.

      64 Nagashetti, V., Mahadevaraju, G.K., Muralidhar, T.S. et al. (2013). Biosorption of heavy metals from soil by Pseudomonas aeruginosa. International Journal of Innovative Technology and Exploring Engineering (IJITEE) 2 (6): 9–17.

      65 Oves, M., Khan, M.S., and Zaidi, A. (2013). Biosorption of heavy metals by Bacillus thuringiensis strain OSM29 originating from industrial effluent contaminated north Indian soil. Saudi Journal of Biological Sciences 20 (2): 121–129. doi:10.1016/j.sjbs.2012.11.006.

      66 Oyedepo, T.A. (2011). Biosorption of lead (II) and copper (II) metal ions on Calotropisprocera (Ait.). Science Journal of Pure and Applied Chemistry 1: 1–7.

      67 Park, D., Yun, Y.‐S., and Park, J.M. (2010). The past, present, and future trends of biosorption. Biotechnology and Bioprocess Engineering 15 (1): 86–102. doi:10.1007/s12257‐009‐0199‐4.

      68 Park, J.K., Lee, J.W., and Jung, J.Y. (2003). Cadmium uptake capacity of two strains of Saccharomyces cerevisiae cells. Enzyme and Microbial Technology 33 (4): 371–378. doi:10.1016/S0141‐0229(03)00133‐9.

      69 Pehlivan, E., Altun, T., and Parlayici, S. (2012). Modified barley straw as a potential biosorbent for removal of copper ions from aqueous solution. Food Chem 135: 2229–2234.

      70 Prasad, K.S., Srivastava, P., Subramanian, V., and Paul, J. (2011). Biosorption of As(III) ion on Rhodococcus sp. WB‐12: biomass characterization and kinetic studies. Separ Sci Technol 46: 2517–2525.

      71 Quiton, K.G., Doma, B., Futalan, C.M. et al. (2018). Removal of chromium(VI) and zinc(II) from aqueous solution using kaolin‐supported bacterial biofilms of Gram‐negative