Nanotechnology in Medicine. Группа авторов. Читать онлайн. Newlib. NEWLIB.NET

Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Химия
Год издания: 0
isbn: 9781119769880
Скачать книгу
deficiency is associated with numerous human diseases (Vinceti et al. 2017). At the same time, an excess of Se can be toxic and lead to selenosis. Over the past decades, many researchers have identified the significant biomedical potential of SeNPs. However, along with favorable results, it is very important to study the negative and possible side effects associated with the use of Se in nanoforms. NPs are able to enter into the human body by inhalation, oral, parenteral routes and interact with intracellular structures and macromolecules for a long time. Entered NPs can be distributed to various organs, where they are able to retain their structure or to be modified, metabolized.

      Unfortunately, today there is no unambiguous information on whether NРs are absolutely safe for humans or have a certain toxicity. Thus, the study of the absorption, distribution, metabolism, and excretion of NPs also as the mechanisms of interaction with living systems studies are necessary to understand their activity, behavior in biological systems, and potential in vivo hazards.

      In nature, Se exists mainly in the form of selenate (Se6+), selenite (Se4+), selenide (Se2−), and elemental Se (Se0). The latter is insoluble in aqueous media and less toxic and biologically inert. However, it was found that elemental Se in the form of nano‐sized particles is not only biocompatible but also has a number of biological activities (antitumor, antimicrobial, protective). This is the reason for obtaining elemental Se in the NP form by all modern synthesis methods (physical, chemical, and biological) (Wadhwani et al. 2016; Skalickova et al. 2017). Moreover, since the biological properties of SeNPs (such as toxicity, selectivity for various cell types, biocompatibility, and biodegradability) as well as the presence of specific activities directly depend on their physical and chemical properties, special attention is paid to the ability to control the size, shape, composition, and uniformity for forming NPs (Zhang et al. 2004). NPs of the following shapes and configurations are currently known: zero‐dimensional nanocrystals and quantum dots; one‐dimensional nanospheres, nanorods, nanowires, nanotubes, and nanobelts; two‐dimensional arrays of NPs; thin films and three‐dimensional structures such as superlattices (Piacenza et al. 2018).

      1 Methods based on “upstream” approaches in which SeNPs are formed from precursors (Se salt) as a result of chemical reactions (reduction, hydrolysis, or oxidation) (Dwivedi et al. 2011; Malhotra et al. 2014; Kumar et al. 2015; Wadhwani et al. 2016; Yu et al. 2016; Skalickova et al. 2017).

      2 “Downstream” processes where smaller nanostructures are formed from a larger precursor by melting or dissociation in a solvent (Triantis et al. 2009; Gusbiers et al. 2015; Sarkar et al. 2015; Badgar 2019).

      3 Matrix processes involving the use of various physical or chemical matrices for the conversion of Se‐containing precursors into NPs.

Schematic illustration of methods for the synthesis of selenium nanoparticles.

      Source: Based on Piacenza et al. (2018).

      Despite the wide selection of chemical and physical methods for the synthesis of NPs, as well as the use of new reducing agents, catalysts, matrices, the choice of the most effective and least expensive synthesis method remains difficult for the researcher. In addition, chemical and physicochemical methods of synthesis often require the use of toxic and aggressive substances, as well as metal catalysts. During the synthesis process, these materials can be incorporated into the NPs as impurities.

      In the case of anaerobic synthesis, recovery of selenite/selenate is the main metabolic process. This process is associated with respiration and is mediated either by specialized enzymes (periplasmic selenate reductase in Thauera selenatis) or nonspecific reductases, which also use sulfites and sulfates as electron acceptors (Tugarova and Kamnev 2017). Under aerobic conditions, the synthesis of SeNPs is associated with the regulation of redox homeostasis, detoxification and denitrification processes. The recovery of Se to Se0 is carried out by systems such as glutathione/glutathione reductase, thioredoxin/thioredoxin reductase, as well as peroxiredoxins, nitrareductases (in rhizobacteria), and low‐molecular weight thiols (Jain et al. 2014; Tugarova and Kamnev 2017). For extracellular synthesis, a mechanism has been proposed for the recovery of Se oxyanions with the participation of the outer membranes cytochromes (Jain et al. 2014).

      SeNPs synthesized by microorganisms have a number of features. These are quite large sizes (from 50 to 500 nm, the average size usually exceeds 100 nm) and the presence of proteins, polysaccharides, or lipids associated with NPs. These biopolymers presumably perform a stabilizing function during the assembly of nanostructures. Such biogenic NPs have unique spectral properties that distinguish