53 Kralj, S. and Makovec, D. (2015). Magnetic assembly of superparamagnetic iron oxide nanoparticle clusters into nanochains and nanobundles. ACS Nano 9 (10): 9700–9707.
54 Lalatonne, Y., Richardi, J., and Pileni, M.P. (2004). Van der Waals versus dipolar forces controlling mesoscopic organizations of magnetic nanocrystals. Nature Materials 3 (2): 121–125.
55 Levins, J.M. and Vanderlick, T.K. (1992). Reduction of the roughness of silver films by the controlled application of surface forces. The Journal of Physical Chemistry 96 (25): 10405–10411.
56 Li, H.L., Henderson, M.J., Wang, K.Z. et al. (2017). Colloidal assembly of magnetic nanoparticles and polyelectrolytes by arrested electrostatic interaction. Colloids and Surfaces A – Physicochemical and Engineering Aspects 514: 107–116.
57 Lifshitz, E.M. and Hamermesh, M. (1992). The theory of molecular attractive forces between solids. In: Perspectives in Theoretical Physics (ed. L.P. Pitaevski), 329–349. Amsterdam: Pergamon.
58 Lin, M.Y., Lindsay, H.M., Weitz, D.A. et al. (1989). Universality in colloid aggregation. Nature 339 (6223): 360–362.
59 Lin, X.M., Sorensen, C.M., and Klabunde, K.J. (2000). Digestive ripening, nanophase segregation and superlattice formation in gold nanocrystal colloids. Journal of Nanoparticle Research 2 (2): 157–164.
60 Lin, M., Huang, H., Liu, Z. et al. (2013). Growth–dissolution–regrowth transitions of Fe3O4 nanoparticles as building blocks for 3D magnetic nanoparticle clusters under hydrothermal conditions. Langmuir 29 (49): 15433–15441.
61 Lu, B.Q., Zhu, Y.J., Zhao, X.Y. et al. (2013). Sodium polyacrylate modified Fe3O4 magnetic microspheres formed by self‐assembly of nanocrystals and their applications. Materials Research Bulletin 48 (2): 895–900.
62 Mandriota, G., Di Corato, R., Benedetti, M. et al. (2019). Design and application of cisplatin‐loaded magnetic nanoparticle clusters for smart chemotherapy. ACS Applied Materials & Interfaces 11 (2): 1864–1875.
63 Martina, M.‐S., Fortin, J.‐P., Ménager, C. et al. (2005). Generation of superparamagnetic liposomes revealed as highly efficient MRI contrast agents for in vivo imaging. Journal of the American Chemical Society 127 (30): 10676–10685.
64 Materia, M.E., Guardia, P., Sathya, A. et al. (2015). Mesoscale assemblies of iron oxide nanocubes as heat mediators and image contrast agents. Langmuir 31 (2): 808–816.
65 Meyer, M., Le Ru, E.C., and Etchegoin, P.G. (2006). Self‐limiting aggregation leads to long‐lived metastable clusters in colloidal solutions. The Journal of Physical Chemistry B 110 (12): 6040–6047.
66 Mirkin, C.A., Letsinger, R.L., Mucic, R.C., and Storhoff, J.J. (1996). A DNA‐based method for rationally assembling nanoparticles into macroscopic materials. Nature 382 (6592): 607–609.
67 Moulton, B. and Zaworotko, M.J. (2001). From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids. Chemical Reviews 101 (6): 1629–1658.
68 Murray, C.B., Kagan, C.R., and Bawendi, M.G. (2000). Synthesis and characterization of monodisperse nanocrystals and close‐packed nanocrystal assemblies. Annual Review of Materials Science 30 (1): 545–610.
69 Murthy, S., Wang, Z.L., and Whetten, R.L. (1997). Thin films of thiol‐derivatized gold nanocrystals. Philosophical Magazine Letters 75 (5): 321–328.
70 Nandwana, V., Singh, A., You, M.M. et al. (2018). Magnetic lipid nanocapsules (MLNCs): self‐assembled lipid‐based nanoconstruct for non‐invasive theranostic applications. Journal of Materials Chemistry B 6 (7): 1026–1034.
71 Niculaes, D., Lak, A., Anyfantis, G.C. et al. (2017). Asymmetric assembling of iron oxide nanocubes for improving magnetic hyperthermia performance. ACS Nano 11 (12): 12121–12133.
72 Nie, W., Wei, W., Zuo, L. et al. (2019). Magnetic nanoclusters armed with responsive PD‐1 antibody synergistically improved adoptive T‐cell therapy for solid tumors. ACS Nano 13 (2): 1469–1478.
73 Ninham, B.W. (1999). On progress in forces since the DLVO theory. Advances in Colloid and Interface Science 83 (1): 1–17.
74 Niu, D.C., Li, Y.S., Ma, Z. et al. (2010). Preparation of uniform, water‐soluble, and multifunctional nanocomposites with tunable sizes. Advanced Functional Materials 20 (5): 773–780.
75 Noh, S.‐h., Na, W., Jang, J.‐t. et al. (2012). Nanoscale magnetism control via surface and exchange anisotropy for optimized ferrimagnetic hysteresis. Nano Letters 12 (7): 3716–3721.
76 Nonappa and Ikkala, O. (2018). Hydrogen bonding directed colloidal self‐assembly of nanoparticles into 2D crystals, capsids, and supracolloidal assemblies. Advanced Functional Materials 28 (27): 1704328.
77 Ohara, P.C., Leff, D.V., Heath, J.R., and Gelbart, W.M. (1995). Crystallization of opals from polydisperse nanoparticles. Physical Review Letters 75 (19): 3466–3469.
78 Paquet, C., Pagé, L., Kell, A., and Simard, B. (2010). Nanobeads highly loaded with superparamagnetic nanoparticles prepared by emulsification and seeded‐emulsion polymerization. Langmuir 26 (8): 5388–5396.
79 Paquet, C., de Haan, H.W., Leek, D.M. et al. (2011). Clusters of superparamagnetic iron oxide nanoparticles encapsulated in a hydrogel: a particle architecture generating a synergistic enhancement of the T2 relaxation. ACS Nano 5 (4): 3104–3112.
80 Park, J.C., Park, T.Y., Kim, D.H. et al. (2020). Multifunctional nanocomposite clusters enabled by amphiphilic/bioactive natural polysaccharides. Chemical Engineering Journal 379: 122406.
81 Peng, X., Chen, J., Cheng, T. et al. (2012). PLGA modified Fe3O4 nanoclusters for siRNA delivery. Materials Letters 81: 102–104.
82 Pham, T.T.D., Seo, Y.H., Lee, D. et al. (2019). Ordered assemblies of Fe3O4 and a donor–acceptor‐type pi‐conjugated polymer in nanoparticles for enhanced photoacoustic and magnetic effects. Polymer 161: 205–213.
83 Pileni, M.P. (2001). Nanocrystal self‐assemblies: fabrication and collective properties. The Journal of Physical Chemistry B 105 (17): 3358–3371.
84 Pulfer, S.K., Ciccotto, S.L., and Gallo, J.M. (1999). Distribution of small magnetic particles in brain tumor‐bearing rats. Journal of Neuro‐Oncology 41 (2): 99–105.
85 Qiu, P.H., Jensen, C., Charity, N. et al. (2010). Oil phase evaporation‐induced self‐assembly of hydrophobic nanoparticles into spherical clusters with controlled surface chemistry in an oil‐in‐water dispersion and comparison of behaviors of individual and clustered iron oxide nanoparticles. Journal of the American Chemical Society 132 (50): 17724–17732.
86 Rance, G.A., Marsh, D.H., Bourne, S.J. et al. (2010). Van der Waals interactions between nanotubes and nanoparticles for controlled assembly of composite nanostructures. ACS Nano 4 (8): 4920–4928.
87 Riedinger, A., Guardia, P., Curcio, A. et al. (2013). Subnanometer local temperature probing and remotely controlled drug release based on azo‐functionalized iron oxide nanoparticles. Nano Letters 13 (6): 2399–2406.
88 Rippe, M., Michelas, M., Putaux, J.‐L. et al. (2020). Synthesis and magnetic manipulation of hybrid nanobeads based on Fe3O4 nanoclusters and hyaluronic acid grafted with an ethylene glycol‐based copolymer. Applied Surface Science 510: 145354.
89 Salvatore, A., Montis, C., Berti, D., and Baglioni, P. (2016). Multifunctional magnetoliposomes for sequential controlled release. ACS Nano 10 (8): 7749–7760.
90 Sau, T.K. and Murphy, C.J. (2005). Self‐assembly patterns formed upon solvent evaporation of aqueous cetyltrimethylammonium bromide‐coated gold nanoparticles of various shapes. Langmuir 21 (7): 2923–2929.
91 Schmidtke, C., Eggers, R., Zierold, R. et al. (2014). Polymer‐assisted self‐assembly of superparamagnetic iron oxide nanoparticles into well‐defined clusters: controlling the collective magnetic properties. Langmuir 30 (37): 11190–11196.
92 Sciortino, F. and