В сущности, нам нужно расположить сотню различных элементов в нужном порядке. Оценим вероятность этого события из следующей модельной задачи. Положим, что мы имеем рулетку с всего одной лункой и одним шариком. После бросания шарика на вращающуюся рулетку он всегда в итоге попадет в эту единственную лунку. То есть в этом случае нам достаточно единственного опыта для получения нужного результата. Далее, увеличим число лунок и, соответственно, число шариков, до двух, и занумеруем их. Тогда после вбрасывания шариков на рулетку возможно два варианта: правильный, когда номера шариков и лунок совпадут, и неправильный, когда они не совпадут. То есть в этом случае в среднем каждое второе бросание даст верный результат. В случае трех лунок и трех шариков, среднее число бросаний увеличится до шести. Так как первый шарик попадает в нужную лунку с вероятностью одна третья (три свободных лунки для него), второй с вероятностью одна вторая (для него уже осталось только две свободных лунки), а третьему остается только занять свободную лунку, то есть у него вероятность единица. Перемножая вероятности для каждого шарика, и получаем величину в одну шестую, то есть в среднем нужно шесть бросаний. Добавление четвертой пары шарик-лунка увеличивает число средних бросаний еще в четыре раза, то есть до двадцати четырех. Добавление пятой пары, увеличивает среднее число еще в пять раз до 120, и т. д. Легко прослеживается закономерность, что число необходимых бросаний в случае наличия в рулетке N пар шарик-лунка равно произведению всех чисел от 1 до N, то есть N! (читается N – факториал).
Если бы нам нужно было собрать в линейную упорядоченную цепочку всего пять аминокислот (а не сотню), то нам понадобилось бы повторить наш опыт с идеализированными разрядами всего 5! или сто двадцать раз, что вполне приемлемо и выполнимо. То есть фактор случайности при небольшом числе объединяемых элементов не является большой проблемой. Посмотрим, сколько раз следует повторить опыт, если нужно упорядочить случайным образом не пять, а, все-таки, сотню аминокислот. Калькулятор показывает, что 100! равно некому целому числу, в котором 158 знаков. Как понять, насколько велико это число, если число миллиард имеет только 10 знаков, а триллион имеет всего 13 знаков?
Предположим,