Approaches to Soil Health Analysis, Volume 1. Группа авторов. Читать онлайн. Newlib. NEWLIB.NET

Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Биология
Год издания: 0
isbn: 9780891189848
Скачать книгу
weather patterns (e.g., multiple freeze–thaw cycles) may increase compaction and runoff compared to using a moderate fall tillage operation. For those reasons, soil health assessment and management must always be holistic, striving to balance tradeoffs, and accounting for biological, chemical, and physical property and process changes to be useful and meaningful for regenerative and sustainable soil management and protection of our fragile resources.

      Many current soil health activities began to emerge in the 1970s (Alexander, 1971). In part, they were accelerated by the 1973 U.S. oil embargo which increased energy and nitrogen (N) fertilizer prices (Warkentin & Fletcher, 1977). Escalating N fertilizer prices led to renewed interest among soil and agronomic researchers regarding how the soil microbial community might be enhanced to help supply crop‐available N rather than continuing to depend on costly fertilizer inputs (Gregorich & Carter, 1997; Tilman, 1998). The Food Security Act of 1985 also introduced new incentives to encourage producers to implement minimum‐ or no‐tillage conservation practices to reduce soil erosion, thus increasing farmer and society focus on the importance of soils for producing the food and fiber humans need and. For maintaining the ecosystems on which all life ultimately depends (National Research Council, 1993).

      In contrast to soil quality efforts during the 1990s and early 2000s, a major driver of soil health projects from 2011 to 2020 has been investment by private industry. This can be partially explained by the rapid increase in corporate social responsibility reporting between 2011 and 2020 (Sustainability Reports, 2019). Consumer demand and sustainable, responsible shareholder investment pressures have driven this increase in reporting—which has created a corporate need for transparency in the environmental impact from agricultural production systems.

      A leader in building public‐private‐partnerships focused on soil was the Soil Renaissance which was initiated to reawaken public interest and awareness of the importance of soil health in vibrant, profitable and sustainable natural resource systems. Founded as a Farm Foundation and Noble Research Institute collaboration, it sought to make maintenance and improvement of soil health (https://www.farmfoundation.org/projects/the‐soil‐renaissance‐knowledge‐to‐sustain‐earths‐most‐valuable‐asset‐1873‐d1/) the cornerstone of land use management. The Soil Health Partnership (SHP) (https://www.soilhealthpartnership.org/science/) initiated by the National Corn Growers Association (NCGA), Walton Family Foundation, Monsanto (Bayer), Environmental Defense Fund (EDF) and the Nature Conservancy (TNC) in 2014 was another leader. Soil Renaissance endeavors have been carried on through the formation of the Soil Health Institute which has provided leadership for a North American project to evaluate soil health measurements (Norris et al., 2020). Meanwhile, the SHP has focused on using science and data to work directly with farmers to adopt practical agricultural practices including (i) cover crops, (ii) conservation tillage, and (iii) advanced nutrient management to improve the economic and environmental sustainability of the farm. Administered by the NCGA, the partnership has more than 220 working farms enrolled in 15 states and one Canadian province. Collectively SHP, SHI, and other regional, state and local partnerships have created an exponential increase in recognition and adoption of soil and crop management practices that can protect, improve, and sustain our fragile soil, water, and air resources.

      Historically, a significant soil health development during the 1980s and 1990s was the Canadian publication entitled “The Health of Our Soil” (Acton & Gregorich, 1995) which was one of the first broad‐scale, organized efforts to provide land managers information on implementing SH‐improving practices. Following those Canadian efforts, several U.S. soil scientists developed a definition of soil quality and recommended assessment methods to characterize how tillage and other crop management decisions were affecting soil resources (e.g., Doran et al., 1994; Doran & Jones, 1996; Karlen et al., 1997). The importance of soil biology was recognized as integral to improving the understanding and measurement of soil quality, but optimum methods to assess soil microbial communities were still being developed (Pankhurst et al., 1997). As the capacity to quantify soil biology indicators improved, discussions of SQ were replaced by the term soil health which was used to communicate to both producers and consumers the importance of understanding and managing soil as a living ecosystem. Consistent with that messaging, the NRCS ultimately defined soil health as “the continued capacity of the soil to function as a vital living ecosystem that supports plants, animals, and humans” (USDA‐NRCS, 2019a).