Groundwater Geochemistry. Группа авторов. Читать онлайн. Newlib. NEWLIB.NET

Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Биология
Год издания: 0
isbn: 9781119709701
Скачать книгу
New York. Environmental Claims Journal 29: 4–48.

      64  Miller, S.M., Spaulding, M.L., and Zimmerman, J.B. (2011). Optimization of capacity and kinetics for a novel bio‐based arsenic sorbent, TiO2‐impregnated chitosan bead. Water Research 45: 5745–5754.

      65 Mishima, A. (1992). Bitter Sea: The Human Cost of Minamata Disease. Kosei Publishing Company.

      66 Mohankumar, K., Hariharan, V., and Rao, N.P. (2016). Heavy metal contamination in groundwater around industrial estate vs residential areas in Coimbatore, India. Journal of Clinical and Diagnostic Research: JCDR 10: BC05.

      67 Mohod, C.V. and Dhote, J. (2013). Review of heavy metals in drinking water and their effect on human health. International Journal of Innovative Research in Science, Engineering and Technology 2: 2992–2996.

      68 Momodu, M. and Anyakora, C. (2010). Heavy metal contamination of ground water: the Surulere case study. Research Journal Environmental and Earth Sciences 2: 39–43.

      69 Mondal, P., Bhowmick, S., Chatterjee, D. et al. (2013). Remediation of inorganic arsenic in groundwater for safe water supply: a critical assessment of technological solutions. Chemosphere 92: 157–170.

      70 Pal, A., Gin, K.Y.‐H., Lin, A.Y.‐C., and Reinhard, M. (2010). Impacts of emerging organic contaminants on freshwater resources: review of recent occurrences, sources, fate and effects. Science of the Total Environment 408: 6062–6069.

      71 Pallier, V., Feuillade‐Cathalifaud, G., Serpaud, B., and Bollinger, J.‐C. (2010). Effect of organic matter on arsenic removal during coagulation/flocculation treatment. Journal of Colloid and Interface Science 342: 26–32.

      72 Plum, L.M., Rink, L., and Haase, H. (2010). The essential toxin: impact of zinc on human health. International Journal of Environmental Research and Public Health 7: 1342–1365.

      73 Pooja, D., Kumar, P., Singh, P., and Patil, S. (2020). Sensors in Water Pollutants Monitoring: Role of Material. Springer.

      74 Rahimizadeh, M. and Liaghatb, A. 2015. Biosorbents for adsorption of heavy metals: A review. International Confenerence on Environmental Science, Engineering and Technologies, CESET, 1–13.

      75 Raviraja, A., Babu, V., Narayanamurthy, G. et al. (2008). Lead toxicity in a family as a result of occupational exposure. Arhiv za Higijenu Rada i Toksikologiju 59: 127–133.

      76 Russoniello, C.J., Fernandez, C., Bratton, J.F. et al. (2013). Geologic effects on groundwater salinity and discharge into an estuary. Journal of Hydrology 498: 1–12.

      77 Ryan, P.B., Huet, N., and Macintosh, D.L. (2000). Longitudinal investigation of exposure to arsenic, cadmium, and lead in drinking water. Environmental Health Perspectives 108: 731–735.

      78 Savci, S. (2012). An agricultural pollutant: chemical fertilizer. International Journal of Environmental Science and Development 3: 73.

      79 Singaraja, C., Chidambaram, S., Srinivasamoorthy, K. et al. (2015). A study on assessment of credible sources of heavy metal pollution vulnerability in groundwater of Thoothukudi districts, Tamilnadu, India. Water Quality, Exposure and Health 7: 459–467.

      80 Singh, R., Singh, S., Parihar, P. et al. (2015). Arsenic contamination, consequences and remediation techniques: a review. Ecotoxicology and Environmental Safety 112: 247–270.

      81 Shahalam, A.M., Al‐Harthy, A., and Al‐Zawhry, A. (2002). Feed water pretreatment in RO systems: unit processes in the Middle East. Desalination 150: 235–245.

      82  Shannon, M.A., Bohn, P.W., Elimelech, M., et al. 2010. Science and technology for water purification in the coming decades. Nanoscience and technology: a collection of reviews from nature Journals. World Scientific.

      83 Sharma, V.K., Dutta, P.K., and Ray, A.K. (2007). Review of kinetics of chemical and photocatalytical oxidation of arsenic (III) as influenced by pH. Journal of Environmental Science and Health, Part A 42: 997–1004.

      84 Sharma, R., Singh, N., Tiwari, S. et al. (2015). Cerium functionalized PVA–chitosan composite nanofibers for effective remediation of ultra‐low concentrations of Hg (II) in water. RSC Advances 5: 16622–16630.

      85 Smith, L.A. (1995). Remedial Options for Metals‐Contaminated Sites. Lewis Publ.

      86 Soni, V., Singh, P., Shree, V., and Goel, V. (2018). Effects of VOCs on human health. In: Air Pollution and Control (eds. N. Sharma, A.K. Agarwal, P. Eastwood, et al.). Springer.

      87 Sundar, S. and Chakravarty, J. (2010). Antimony toxicity. International Journal of Environmental Research and Public Health 7: 4267–4277.

      88 Szatyłowicz, E. and Skoczko, I. (2018). The use of activated alumina and magnetic field for the removal heavy metals from water. Journal of Ecological Engineering 19: 61–67.

      89 Talabi, A.O. and Kayode, T.J. (2019). Groundwater pollution and remediation. Journal of Water Resource and Protection 11: 1–19.

      90 Thomas, D.J., Styblo, M., and Lin, S. (2001). The cellular metabolism and systemic toxicity of arsenic. Toxicology and Applied Pharmacology 176: 127–144.

      91 Tran, D.A., Tsujimura, M., Kambuku, D., and Dang, T.D. (2020). Hydrogeochemical characteristics of a multi‐layered coastal aquifer system in the Mekong Delta, Vietnam. Environmental Geochemistry and Health 42: 661–680.

      92 Vanloon, G.W. and Duffy, S.J. (2017). Environmental Chemistry: A Global Perspective. Oxford university press.

      93 Vörösmarty, C.J., Douglas, E.M., Green, P.A., and Revenga, C. (2005). Geospatial indicators of emerging water stress: an application to Africa. Ambio: A Journal of the Human Environment 34: 230–236.

      94 Velthof, G., Oudendag, D., Witzke, H. et al. (2009). Integrated assessment of nitrogen losses from agriculture in EU‐27 using MITERRA‐EUROPE. Journal of Environmental Quality 38: 402–417.

      95 Werner, A.D., Bakker, M., Post, V.E. et al. (2013). Seawater intrusion processes, investigation and management: recent advances and future challenges. Advances in Water Resources 51: 3–26.

      96 WHO 2001. Arsenic in drinking water. World Health Organization. http://www.who.int/mediacentre/factsheets/fs210/EN.

      97 WHO 2003. Antimony in drinking water. Background document for development of WHO Guidelines for Drinking‐water Quality. WHO Geneva.

      98 WHO (2011). Guidelines for drinking‐water quality. World Health Organization 216: 303–304.

      99 WHO. 14 May 2019. Drinking water [Online]. Available: https://www.who.int/news‐room/fact‐sheets/detail/drinking‐water.

      100 Wilbur, S., Abadin, H., Fay, M. et al. (2012). Toxicological Profile for Chromium. Atlanta (GA): US Department of Health and Human Services. Public Health Service, Agency for Toxic Substances and Disease Registry, 24049864.

      101 Willis, S.S., Haque, S.E., and Johannesson, K.H. (2011). Arsenic and antimony in groundwater flow systems: a comparative study. Aquatic Geochemistry 17: 775–807.

      102  Yoon, S.‐H. and Lee, J.H. (2005). Oxidation mechanism of As (III) in the UV/TiO2 system: evidence for a direct hole oxidation mechanism. Environmental Science and Technology 39: 9695–9701.

      103 Zhitkovich, A. (2011). Chromium in drinking water: sources, metabolism, and cancer risks. Chemical Research in Toxicology 24: 1617–1629.

      104 Zhu, S., Xing, C., Wu, F. et al. (2019). Cake‐like flexible carbon nanotubes/graphene composite prepared via a facile method for high‐performance electromagnetic interference shielding. Carbon 145: 259–265.

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив