Mikhlin, Y.V. and Avramov, K.V. (2011). Nonlinear normal modes for vibrating mechanical systems. Review of theoretical developments. Appl. Mech. Rev., 63(6), 060802–21.
Mitzner, K.M. (2003). Foreword. In Theory of Edge Diffraction in Electromagnetics, Ufimtsev, P.Y. (ed.). Tech Science Press, Encino, California.
Moskalenko, V.N. (1961). On the application of refined theories of bending of plates in free vibration problems. Inzh. Zh., 1(3), 93–101.
Moskalenko, V.N. (1968). Random vibrations of multi-span plates. Mech. Solids, 3(4), 79–84.
Moskalenko, V.N. (1969). On the vibrations of multispan plates. Rasch. Prochn., 14, 360–367.
Moskalenko, V.N. (1972). On the frequency spectra of natural vibrations of shells of revolution. J. Appl. Math. Mech., 36(2), 279–283.
Moskalenko, V.N. (1975). Frequency spectra and modes of free vibrations of doubly periodic systems. J. Appl. Math. Mech., 39, 503–510.
Moskalenko, V.N. and Chen, D.L. (1965). On natural vibrations of multispan uncut plates. Prikl. Mekh. (Appl. Mech.), 1(3), 59–66.
Nayfeh, A.H. (2000). Perturbation Methods. Wiley, New York.
Nelson, H.M. (1978). High frequency flexural vibration of thick rectangular bars and plates. J. Sound Vib., 60, 101–118.
Pevzner, P., Berkovits, A., Weller, T. (2000). Further modification of Bolotin method in vibration analysis of rectangular plates. AIAA J., 38(9), 1725–1729.
Reissner, H.J. (1912). Spannungen in Kugelschalen (Kuppeln). Festschrift Heinrich Müller-Breslau gewidmet nach Vollendung seines sechzigsten Lebensjahres. Alfred-Kröner Verlag, Leipzig, 181–193.
Rich, B. and Janos, L. (1994). Skunk Works: A Personal Memoir of My Years at Lockheed. Little Brown, Boston.
Rosenberg, R.M. (1962). The normal modes of nonlinear n-degree-of-freedom systems. J. Appl. Mech., 29, 7–14.
Shtaerman, I.Y. (1924). On the application of the method of asymptotic integration to the calculation of elastic shells. Izv. Kievskogo Polit. & S.-H. Inst., 1(2), 75–99.
Stearn, S.M. (1970). Spatial variation of stress strain and acceleration in structures subject to broad frequency band excitation. J. Sound Vib., 12, 85–97.
Ueng, C.E.S. and Nickels Jr., R.C. (1978). Dynamic response of structural panel by Bolotin’s method. Int. J. Solids Struct., 14(7), 571–578.
Ufimtsev, P.Y. (1962). Method of Edge Waves in the Physical Theory of Diffraction, translated by Foreign Technology Division Wright-Patterson AFB. Def. Techn. Inf. Center, Cameron Station, Alexandria.
Ufimtsev, P.Y. (2003). Theory of Edge Diffraction in Electromagnetics. Tech Science Press, Encino, California.
Ufimtsev, P.Y. (2014). Fundamentals of the Physical Theory of Diffraction. John Wiley & Sons, Hoboken, New Jersey.
Vakhromeev, Y.M. and Kornev, V.M. (1972). Dynamic edge effect in beams. Formulation of truncated problems. Mech. Solids, 7(4), 95–103.
Vijaykumar, K. and Ramaiah, G.K. (1978a). Analysis of vibration of clamped square plates by the Rayleigh-Ritz method with asymptotic solutions from a modified Bolotin method. J. Sound Vib., 56(1), 127–135.
Vijaykumar, K. and Ramaiah, G.K. (1978b). Use of asymptotic solutions from a modified Bolotin method for obtaining natural frequencies of clamped rectangular orthotropic plates. J. Sound Vib., 59(3), 335–347.
Wah, T. (1964). The normal modes of vibration of certain nonlinear continuous systems. J. Appl. Mech., 31(1), 139–140.
Weaver Jr., W., Timoshenko, S.P., Young, D.H. (1990). Vibration Problems in Engineering, 5th edition. John Wiley & Sons, New York.
Wikipedia (2020). WKB approximation [Online]. Available at: https://en.wikipedia.org/wiki/WKB_approximation [accessed July 2020].
Zhinzher, N.I. (1975). Dynamic edge effects in orthotropic elastic shells. J. Appl. Math. Mech., 39(4), 723–726.
Zhinzher, N.I. (1983). Asymptotic method in problems of aeroelastic stability. Probl. Ust. Predel. Nesushch. Sposobnosti Konstr. Leningrad, 44–53.
Zhinzher, N.I. and Denisov, V.N. (1983). Asymptotic method in a problem of nonlinear shell vibrations. Strength Mater., 15(9), 1219–1223.
Zhinzher, N.I. and Denisov, V.N. (1985). Asymptotic method in the problem of nonlinear oscillations of isotropic rectangular plates. Mech. Solids, 20(1), 152–158.
Zhinzher, N.I. and Kadarmetov, I.M. (1984). Application of the asymptotic method to the problem of supersonic flutter of a cylindrical shell. Koleb. Uprug. Konstr. s Zhidkost. Moscow, 114–118.
Zhinzher, N.I. and Kadarmetov, I.M. (1986). Application of the asymptotic method to the problem of the flutter of an orthotropic cylindrical shell. Izv. AN ArmSSR Mech., 39(2), 31–39.
Zhinzher, N.I. and Khromatov, V.E. (1971). Application of the asymptotic method to the study of vibration spectra of orthotropic circular cylindrical shells. Mech. Solids, 6(6), 72–82.
Zhinzher, N.I. and Khromatov, V.E. (1984). Asymptotic method in problems of nonlinear vibration of rectangular slightly orthotropic plates. Sov. Appl. Mech., 20(11), 742–746.
Zhinzher, N.I. and Khromatov, V.E. (1990). Oscillation of shallow shells with finite amplitudes. Sov. Appl. Mech., 26(11), 1100–1104.
Chapter written by Igor V. ANDRIANOV and Lelya A. KHAJIYEVA.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.