50 Girardet, N., and Webster, F.H. (2011). Oat milling : specification, storage, and processing. In Oats: Chemistry and technology (ed. F.H. Webster), pp. 301–319. AACC.
51 Gomez, M., Pardo, J., Oliete, B., and Caballero, P. (2009). Effect of the milling process on quality characteristics of rye flour. Journal of the Science of Food and Agriculture, 89, 470–476.
52 Gomez, M., Ruiz‐Paris, E., and Oliete, B. (2011). Influence of wheat milling on low‐hydration bread quality developed by sheeting rolls. Food Science and Technology International, 17, 256–265.
53 Greffeuille, V., Abecassis, J., Bar L’Helgouach, C., and Lullien‐Pellerin, V. (2005). Differences in the aleurone layer fate between hard and soft common wheats at grain milling. Cereal Chemistry, 82, 138–143.
54 Greffeuille, V., Abecassis, J., Barouh, N., Villeneuve, P., Mabille, F., Bar L’Helgouac’h, C., and Lullien‐Pellerin, V. (2007). Analysis of the milling reduction of bread wheat farina: physical and biochemical characterisation. Journal of Cereal Science, 45, 97–105.
55 Greffeuille, V., Abecassis, J., Rousset, M., Oury, F.X., Faye, A., Bar L'Helgouac’h, C., and Lullien‐Pellerin, V. (2006). Grain characterization and milling behaviour of near‐isogenic lines differing by hardness. Theoretical and Applied Genetics, 114, 1–12.
56 Harris, P.J., Chavan, R.R., and Ferguson, L.R. (2005). Production and characterisation of two wheat‐bran fractions: an aleurone‐rich and a pericarp‐rich fraction. Molecular Nutrition & Food Research, 49, 536–545.
57 He, J.B., Penson, S., Powers, S.J., Hawes, C., Shewry, P.R., and Tosi, P. (2013). Spatial patterns of gluten protein and polymer distribution in wheat grain. Journal of Agricultural and Food Chemistry, 61, 6207–6215.
58 Hell, J., Kneifel, W., Rosenau, T., and Böhmdorfer, S. (2014). Analytical techniques for the elucidation of wheat bran constituents and their structural features with emphasis on dietary fiber – A review. Trends in Food Science & Technology, 35, 102–113.
59 Hemery, Y., Chaurand, M., Holopainen, U., Lampi, A.M., Lehtinen, P., Piironen, V., Sadoudi, A., and Rouau, X. (2011a). Potential of dry fractionation of wheat bran for the development of food ingredients, part I: Influence of ultra‐fine grinding. Journal of Cereal Science, 53, 1–8.
60 Hemery, Y., Holopainen, U., Lampi, A.M., Lehtinen, P., Nurmi, T., Piironen, V., Edelmann, M., and Rouau, X. (2011b). Potential of dry fractionation of wheat bran for the development of food ingredients, part II: Electrostatic separation of particles. Journal of Cereal Science, 53, 9–18.
61 Hemery, Y., Lullien‐Pellerin, V., Rouau, X., Abecassis, J., Samson, M.F., Aman, P., von Reding, W., Spoerndli, C., and Barron, C. (2009). Biochemical markers: Efficient tools for the assessment of wheat grain tissue proportions in milling fractions. Journal of Cereal Science, 49, 55–64.
62 Hemery, Y., Rouau, X., Lullien‐Pellerin, V., Barron, C., and Abecassis, J. (2007). Dry processes to develop wheat fractions and products with enhanced nutritional quality. Journal of Cereal Science, 46, 327–347.
63 Hemery, Y.M., Anson, N.M., Havenaar, R., Haenen, G., Noort, M.W.J., and Rouau, X. (2010). Dry‐fractionation of wheat bran increases the bioaccessibility of phenolic acids in breads made from processed bran fractions. Food Research International, 43, 1429–1438.
64 Heneen, W.K., Karlsson, G., Brismar, K., Gummeson, P.O., Marttila, S., Leonova, S., Carlsson, A.S., Bafor, M., Banas, A., Mattsson, B., Debski, H., and Stymne, S. (2008). Fusion of oil bodies in endosperm of oat grains. Planta, 228, 589–599.
65 Hentschel, V., Kranl, K., Hollmann, J., Lindhauer, M.G., Boehm, V., and Bitsch, R. (2002). Spectrophotometric determination of yellow pigment content and evaluation of carotenoids by high‐performance liquid chromatography in durum wheat grain. Journal of Agricultural and Food Chemistry, 50, 6663–6668.
66 Hettiarachchy, N.S., Ju, Z.Y., Siebenmorgen, T., and Sharp, R.N. (2000). Rice : production, processing and utilization. In Handbook of Cereal Science and Technology, Second Edition, Revised and Expanded (eds. K. Kulp and J.G. Ponte), pp. 203–221. Dekker.
67 Hoije, A., Grondahl, M., Tommeraas, K., and Gatenholm, P. (2005). Isolation and characterization of physicochemical and material properties of arabinoxylans from barley husks. Carbohydrate Polymers, 61, 266–275.
68 Hsi‐Mei, L. (1999). A simple procedure for the measurement of wheat germ in the milling products by fluorescence spectroscopy. Food Science and Agricultural Chemistry, 1, 47–54.
69 Izydorczyk, M.S., Jacobs, M.S., and Dexter, J.E. (2003). Distribution and structural variation of nonstarch polysaccharides in milling fractions of hull‐less barley with variable amylose content. Cereal Chemistry, 80, 645–‐653.
70 Jha, P.K., Kudachikar, V.B., and Kumar, S. (2013). Lipase inactivation in wheat germ by gamma irradiation. Radiation Physics and Chemistry, 86, 136–139.
71 Katina K., Laitila A., Juvonen R., Liukkonen K.H., Kariluoto S., Piironen V., Landberg R., Åman P., and Poutanen K. (2007). Bran fermentation as a means to enhance technological properties and bioactivity of rye. Food Microbiology, 24(2), 175–186.
72 Kim, B.K., Cho, A.R., Chun, Y.G., and Park, D.J. (2013). Effect of microparticulated wheat bran on the physical properties of bread. International Journal of Food Sciences and Nutrition, 64, 122–129.
73 Knuckles, B.E., Chiu, M.M., and Betschart, A.A. (1992). Beta‐glucan‐enriched fractions from laboratory‐scale dry milling and sieving of barley and oats. Cereal Chemistry, 69, 198–202.
74 Ko, S.N., Ha, T.Y., Hong, S.I., Yoon, S.W., Lee, J., Kim, Y., and Kim, I.H. (2012). Enrichment of tocols from rice germ oil using supercritical carbon dioxide. International Journal of Food Science and Technology, 47, 761–767.
75 Konopka, I., Czaplicki, S., and Rotkiewicz, D. (2006). Differences in content and composition of free lipids and carotenoids in flour of spring and winter wheat cultivated in Poland. Food Chemistry, 95, 290‐300.
76 Krings, U., El‐Saharty, Y.S., El‐Zeany, B.A., Pabel, B., and Berger, R.G. (2000). Antioxidant activity of extracts from roasted wheat germ. Food Chemistry, 71, 91–95.
77 Kumar, V., Sinha, A.K., Makkar, H.P.S., and Becker, K. (2010). Dietary roles of phytate and phytase in human nutrition: A review. Food Chemistry, 120, 945–959.
78 Laca, A., Mousia, Z., Diaz, M., Webb, C., and Pandiella, S.S. (2006). Distribution of microbial contamination within cereal grains. Journal of Food Engineering, 72, 332–338.
79 Lampi, A.M., Moreau, R.A., Piironen, V., and Hicks, K.B. (2004). Pearling barley and rye to produce phytosterol‐rich fractions. Lipids, 39, 783–787.
80 Landberg, R., Marklund, M., Kamal‐Eldin, A., and Aman, P. (2014). An update on alkylresorcinols – Occurrence, bioavailability, bioactivity and utility as biomarkers. Journal of Functional Foods, 7, 77–89.
81 Latunde‐Dada, G.O., Li, X., Parodi, A., Edwards, C.H., Ellis, P.R., and Sharp, P.A. (2014). Micromilling enhances iron bioaccessibility from wholegrain wheat. Journal of Agricultural and Food Chemistry, 62, 11222–11227.
82 Lempereur, I., Rouau, X., and Abecassis, J. (1997). Genetic and agronomic variation in arabinoxylan and ferulic acid content of durum wheat (Triticum durum L.) grains and its milling fractions. Journal of Cereal Science, 25, 103–110.
83 Letang, C., Samson, M.F., Lasserre, T.M., Chaurand, M., and Abecassis, J. (2002). Production of starch with very low protein content from soft and hard wheat flours by jet milling and air classification. Cereal Chemistry, 79, 535–543.
84 Li, L., Shewry, P.R., and Ward, J.L. (2008). Phenolic acids in wheat varieties in the HEALTHGRAIN diversity screen. Journal of Agricultural and Food Chemistry, 56, 9732–9739.
85 Liyana‐Pathirana, C.M., and Shahidi, F. (2006). Importance of insoluble‐bound phenolics to antioxidant properties of wheat. Journal of Agricultural and Food Chemistry, 54, 1256–1264.
86 Lorenz,