Восхождение к вершине гиперкуба. Великая теорема Ферма для миллиардов обычных людей. Марат Авдыев. Читать онлайн. Newlib. NEWLIB.NET

Автор: Марат Авдыев
Издательство: Издательские решения
Серия:
Жанр произведения: Техническая литература
Год издания: 0
isbn: 9785005376305
Скачать книгу
И вообще, что значит перемещать слои?

      – Я предлагаю зафиксировать ребра вложенных друг в друга гиперкубов a, b, c и наполнить всю эту фигуру несжимаемыми гиперкубиками, затем опустошить a-Малый гиперкуб. – Матвей достал несложный чертёж, уже хорошо всем знакомый.

      – А эта стрелка, надо полагать, обозначает перемещение слоя? – спросил Борщов.

      Рис. 3.1. Перемещение слоёв в гиперкубе.

      – Да, и если вспомнить, формулировку Теоремы Ферма в геометрической форме, то объемы а-Малого гиперкуба должны быть равны разнице объемов между с-Большим и b-Средним гиперкубами. Я думаю, что они должны быть равны послойно.

      – Почему?

      – Потому что, в противном случае от перемещения слоёв будут нарушены фундаментальные свойства наше фигуры: непрерывность и симметричность, а также принцип изотропности пространства.

      – Хорошо, что среди нас нет Артура, он бы сейчас обязательно сказал: не понимаю! – с долей иронии заметила Татьяна.

      – А я отвечу, что свойство непрерывности, это значит заполнение фигуры гиперкубиками без пустот, подобно срезу осины, где видны кольца без сучка и задоринки, без дупла. Свойство однородности – это однородный материал что значит гиперкубик в любом слое остается таким же гиперкубиком, словно строительный кирпич. Симметричность – как угодно вращай нашу фигуру, меняй местами оси координат – получишь один и тот же результат. – уверенно продолжал Матвей.

      – И наконец, изотропность пространства это … – пригласил к продолжение диалога проф. Борщов.

      – … это происходит из греческого и означает одинаковость картины мира по всем направлениям. – быстро ответил Матвей. – Так оно и есть в Космосе, в дали от звёзд. Космонавт видит по всем направлениям примерно одно и то же. Проще говоря, наш гиперкубик центрально симметричен.

      – Из однородности пространства вытекает закон сохранения импульса, а из изотропности — закон сохранения момента импульса – задумчиво заметил Борщов, адресуясь сразу ко всем. – Хорошо, а что из сего этого следует?

      – Из этого следует, что перемещая любой слой из области между средним и большим гиперкубами в малый гиперкуб, мы должны уложить его целое число раз. Но я покажу Вам, что это невозможно! Точнее в пространстве размерности больше двух невозможно. – горячо продолжал Матвей. – Правда формулы выходят громоздкими, но мне пришла в голову одна простая идея условия равенство объемов a-Малый гиперкуб и множество точек между c-Большим и b-Средним гиперкубами вступает в противоречие со свойствами центральной симметричности, непрерывности фигуры.

      – Какая это идея? – спросила Татьяна.

      – На какую именно грань гиперкуба или основание гиперпирамиды можно будет отнести гиперкубик из центра координат?

      – Не понимаю.

      – Помните, мы рассекали нашу фигуру на идентичные гиперпирамиды в количестве 2n. Если мы делаем перемещения