77 77 Booth, W. (1975). Changes with age in the occurrence of C19 steroids in the testis and submaxillary gland of the boar. J. Reprod. Fertil. 42: 459–472.
78 78 Setchell, B. (1978). Endocrinology of the testis. In: The Mammalian Testes, 109–180. New York: Cornell University Press.
79 79 Ritzen, E., Hansson, V., and Frenchn, F. (1981). The Sertoli cell. In: The Testis (eds. H.G. Burger and D.M. de Kretser), 171–194. New York: Raven Press.
80 80 Ivell, R., Balvers, M., Rust, W. et al. (1997). Oxytocin and male reproductive function. Adv. Exp. Med. Biol. 424: 253–264.
81 81 Wathes, D. (1984). Possible actions of gonadal oxytocin and vasopressin. J. Reprod. Fertil. 71: 315–345.
82 82 Wathes, D. (1989). Oxytocin and vasopressin in the gonads. Oxf. Rev. Reprod. Biol. 11: 87–99.
83 83 Nicholson, H. (1996). Oxytocin: a paracrine regulator of prostatic function. Rev. Reprod. 1: 69–72.
84 84 Ang, H., Ungofroren, H., De Bree, F. et al. (1991). Testicular oxytocin gene expression in seminiferous tubules of cattle and transgenic mice. Endocrinology 128: 2110–2117.
85 85 Ungefroren, H., Davidoff, M., and Ivell, R. (1994). Post transcriptional block in oxytocin gene expression within the seminiferous tubules of the bovine testis. J. Endocrinol. 140: 63–72.
86 86 Ivell, R. and Bathgate, R. (2002). Insulin‐like peptide 3 in Leydig cells. In: The Leydig Cell in Health and Disease (eds. A.H. Payne and M.P. Hardy), 279–290. Totowa, NJ: Humana Press.
87 87 Ivell, R. and Anand‐Ivell, R. (2009). The biology of insulin‐like factor 3 (INSL3) in human reproduction. Hum. Reprod. Update 15: 463–476.
88 88 Ivell, R. and Bathgate, R.A. (2002). Reproductive biology of the relaxin‐like factor (RLF/INSL3). Biol. Reprod. 67: 699–705.
89 89 Annand‐Ivell, R., Relan, V., Balvers, M. et al. (2006). Expression of the insulin‐like peptide 3 (INSL3) hormone receptor (LGCR) system in the testis. Biol. Reprod. 74: 945–953.
90 90 Adham, I., Burkhardt, E., Banahmed, M., and Engel, W. (1993). Cloning of a cDNA for a novel insulin‐like peptide of the testicular Leydig cells. J. Biol. Chem. 268: 26668–26672.
91 91 Anand‐Ivell, R., Heng, K., Hafen, B. et al. (2009). Dynamics of INSL3 peptide expression in the rodent testis. Biol. Reprod. 81: 480–487.
92 92 Bay, K., Hartung, S., Ivell, R. et al. (2005). Insulin‐like factor 3 serum levels in 135 normal men and 85 men with testicular disorders: relationship to the luteinizinghormone–testosterone axis. J. Clin. Endocrinol. Metab. 90: 3410–3418.
93 93 Anand‐Ivell, R., Wohlgemuth, J., Haren, M. et al. (2006). Peripheral INSL3 concentrations decline with age in a large population of Australian men. Int. J. Androl. 29: 618–626.
94 94 Bullesbach, E. and Schwabe, C. (2002). The primary structure and disulfide links of the bovine relaxin‐like factor (RLF). Biochemistry 41: 274–281.
95 95 Anand‐Ivell, R., Ivell, R., Driscoll, D., and Manson, J. (2008). Insulin‐like factor 3 levels in amniotic fluid from human male fetuses. Hum. Reprod. 23: 1180–1186.
96 96 Anand‐Ivell, R., Hiendleder, S., Vinoles, C. et al. (2011). INSL3 in the ruminant: a powerful indicator of gender‐ and genetic‐specific feto‐maternal dialogue. PLoS One 6 (5): e19821.
97 97 Ivell, R., Wade, J., and Anand‐Ivell, R. (2013). INSL3 as a biomarker of Leydig cell functionality. Biol. Reprod. 88: 1–8.
98 98 Feugang, J., Rodriguez‐Munoz, J., Willard, S. et al. (2011). Examination of relaxin and its receptors expression in pig gametes and embryos. Reprod. Biol. Endocrinol. 9: 10.
99 99 Feugang J, Rodríguez‐Munoz J, Willard S, Ryan P. Effects of relaxin on motility characteristics of boar spermatozoa during storage. Proceedings of the Sixth International Symposium on Relaxin and Related Peptides, Florence, Italy, 2012. Italian J. Anat. Embryol. (ISSN 1122‐6714).
100 100 Sagata, D., Minagawa, I., Kohriki, H. et al. The insulin‐like factor 3 (INSL 3)‐receptor (RXFP2) network functions as a germ cell survival/anti‐apoptotic factor in boar testes. Endocrinology 156: 1523–1539.
101 101 Pitia, A., Uchiyama, K., Sano, H. et al. (2017). Functional insulin‐like factor 3 (INSL3) hormone‐receptor system in the testes and spermatozoa of domestic ruminants and its potential as a predictor of sire fertility. Anim. Sci. J. 88 (4): 678–690.
102 102 Bagna, B., Schwabe, C., and Anderson, L. (1991). Effect of relaxin on facilitation of parturition in dairy heifers. J. Reprod. Fertil.: 605–615.
103 103 Roche, P., Crawford, R., and Tregear, G. (1993). A single‐copy relaxin‐like gene sequence is present in sheep. Mol. Cell. Endocrinol. 91: 21–28.
104 104 Wilkinson, T., Speed, T., Tregear, G., and Bathgate, R. (2005). Evolution of the relaxin‐like peptide family. BMC Evol. Biol. 5: 14.
105 105 Musah, A., Schwabe, C., Willham, R., and Anderson, L. Relaxin induction of parturition in beef heifers. Endocrinology 118 (4): 1476–1482.
106 106 Malone, L., Opazo, J., Ryan, P., and Hoffmann, F. (2017). Progressive erosion of the relaxin 1 gene in bovids. Gen. Comp. Endocrinol. 252: 12–17.
107 107 Feugang, J., Youngblood, R., Greene, J. et al. (2012). Application of quantum dot nanoparticles for potential non‐invasive bio‐imaging of mammalian spermatozoa. J. Nanobiotechnol. 10: 45.
108 108 Kohsaka, T., Hamano, K., Sasada, H. et al. (2003). Seminal immunoreactive relaxin in domestic animals and its relationship to sperm motility and as a possible index for predicting the fertilizing ability of sires. Int. J. Androl. 26: 115–120.
109 109 Kohsaka, T., Kato, S., Qin, S. et al. (2009). Identification of boar testis as a source of and target tissue of relaxin. Ann. NY Acad. Sci. 1160: 194–196.
110 110 Ferlin, A., Menegazzo, M., Gianesello, I. et al. (2012). Effects of relaxin on human sperm functions. J. Androl. 33: 474–482.
111 111 Feugang, J., Rodriguez‐Munoz, J., Dillard, D. et al. (2015). Beneficial effects of relaxin on motility characteristics of stored boar spermatozoa. Reprod. Biol. Endocrinol. 13: 24–33.
112 112 Miah, A., Salma, U., Tareq, Y. et al. (2007). Effect of relaxin on motility, acrosome reaction, and utilization of glucose in fresh and frozen–thawed bovine spermatozoa. Anim. Sci. J. 78: 495–502.
113 113 Miah, A., Salma, U., Takagi, Y. et al. (2008). Effect of relaxin and IGF‐1 on capacitation, acrosome reaction, cholesterol efflux and utilization of labeled and unlabeled glucose in porcine spermatozoa. Reprod. Med. Biol. 7: 29–36.
114 114 Miah A, Salma U, Sinah P, et al. Intracellular signaling cascades induced by relaxin in the stimulation of capacitation and acrosome reaction in fresh and frozen–thawed bovine spermatozoa. Anim. Reprod. Sci. 2011; 125: 31–40.
115 115 Han, Y., Miah, A., Yoshida, M. et al. (2006). Effect of relaxin on in vitro fertilization (IVF) of porcine oocytes. J. Reprod. Dev. 52: 657–662.
116 116 Elkhawagah, A., Longobardi, V., Sosa, G. et al. (2013). Effect of relaxin and fertilizing ability of buffalo sperm. Reprod. Fertil. Dev. 26 (1): 186.
117 117 Elkhawagah, A., Longobardi, V., Neglia, G. et al. (2015). Effect of relaxin on fertility parameters of frozen–thawed buffalo (Bubalus bubali) sperm. Reprod. Domest. Anim. 50: 756–762.
118 118 Elkhawagah, A., Nervo, T., Poletto, M. et al. (2020). Effect of relaxin on semen quality variables of croypreserved stallion semen. Anim. Reprod. Sci. 216 https://doi.org/10.1016/j.anireprosci.2020.106351.
119 119 Behringer, R. (1994). The in vivo roles of Müllerian‐inhibiting substance. Curr. Top. Dev. Biol. 29: 171–187.
120 120 Cate, R., Mattaliano, R., Hession, C. et al. (1986). Isolation of