А число три в «математической магии», как мы уже видели, занимает совершенно особое место: «Троица, три богословские добродетели, три грации, три декана в каждом знаке зодиака, три силы души, триада число, мера, вес»[90]. Магическая «троица» не оставляет равнодушными и некоторых современных ученых. Так, например, физик-теоретик, доктор физико-математических наук, профессор Ю. С. Владимиров обнаруживает троицу повсеместно в устройстве современной физики и математики: «можно утверждать, что в общепринятой теории поля присутствуют три физические категории: 1) пространство-время, 2) частицы (фермионные поля), 3) поля переносчиков взаимодействий (бозонные поля). Опять мы пришли к вездесущей троице»;[91] «…дифференциальная геометрия покоится на трех началах (опять вездесущая христианская троица): метрике, связности и топологии»[92]. Можно продолжить: триада протон – нейтрон – электрон как основа материальной структуры атома, три пары кварков в Стандартной модели современной физики и т. д. Словом, Бог Троицу любит.
Однако даже если отвлечься от заманчивой задачи поиска триад, троиц и прочих троичностей в окружающем мире, задачи сколь увлекательной, столь и сомнительной с точки зрения реальной значимости результатов, – все же в математике «тройка» и в самом деле имеет завораживающе фундаментальное значение. И если кто-то не склонен доверять «древнему» и «устаревшему» с точки зрения современной науки Пифагору, то ему стоит прислушаться к безусловно авторитетному уже для самой что ни на есть современной науки немецкому математику-универсалу Д. Гильберту. Его рассуждения о предмете и устройстве математики начинаются с двух примеров, вновь возвращающих нас к проблеме троичности: теореме Ферма, согласно которой для любых трех целых чисел a, b и c уравнение an + bn = cn не имеет решения в целых числах при n>2, и задаче трех тел, связанной с ньютоновой астрономией и необходимостью рассчитывать относительные движения трёх связанных тяготением тел (например, Солнца, Земли и Луны) (у этой задачи не существует общего решения в виде конечных аналитических выражений)[93].
Описанные выше примеры нужны Д. Гильберту, чтобы показать два истока математических задач: чистое умозрение (проблема Ферма) и практические расчеты (задача о трех телах). Однако для нас важно, что в основании оказываются задачи, не просто оперирующие случайными троичностями, но наглядно подтверждающие пифагорейский тезис об особой роли тройки и о том, что именно с нее начинается «мир» – вкрадывающаяся в идеальный математический порядок «свобода», мешающая рассчитать относительные