Supposed Examples of Discontinuity among North American Birds.—In North America, the eastern and western provinces are so different in climate and vegetation, and are besides separated by such remarkable physical barriers—the arid central plains and the vast ranges of the Rocky Mountains and Sierra Nevada, that we can hardly expect to find species whose areas may be divided maintaining their identity. Towards the north however the above-named barriers disappear, the forests being almost continuous from east to west, while the mountain range is broken up by passes and valleys. It thus happens that most species of birds which inhabit both the eastern and western coasts of the North American continent have maintained their continuity towards the north, while even when differentiated into two or more allied species their areas are often conterminous or overlapping.
Almost the only bird that seems to have a really discontinuous range is the species of wren, Thryothorus bewickii, of which the type form ranges from the east coast to Kansas and Minnesota, while a longer-billed variety, T. bewickii spilurus, is found in the wooded parts of California and as far north as Puget Sound. If this really represents the range of the species there remains a gap of about 1,000 miles between its two disconnected areas. Other cases are those of Vireo bellii of the middle United States and the sub-species pusillus of California; and of the purple red-finch, Carpodacus purpureus, with its variety C. californicus; but unfortunately the exact limits of these varieties are in neither case known, and though each one is characteristic of its own province, it is possible that they may somewhere become conterminous, though in the case of the red-finches this does not seem likely to be the fact.
In a later chapter we shall have to point out some remarkable cases of this kind where one portion of the species inhabits an island; but the facts now given are sufficient to prove that the discontinuity of the area occupied by a single homogeneous species, by two varieties of a species, by two well-marked sub-species, and by two closely allied but distinct species, are all different phases of one phenomenon—the decay of ill-adapted, and their replacement by better-adapted forms, under the pressure of a change of conditions either physical or organic. We may now proceed with our sketch of the mode of distribution of higher groups.
Distribution and Antiquity of Families.—Just as genera are groups of allied species distinguished from all other groups by some well-marked structural characters, so families are groups of allied genera distinguished by more marked and more important characters, which are generally accompanied by a peculiar outward form and style of colouration, and by distinctive habits and mode of life. As a genus is usually more ancient than any of the species of which it is composed, because during its growth and development the original rudimentary species becomes supplanted by more and more perfectly adapted forms, so a family is usually older than its component genera, and during the long period of its life-history may have survived many and great terrestrial and organic changes. Many families of the higher animals have now an almost worldwide extension, or at least range over several continents; and it seems probable that all families which have survived long enough to develop a considerable variety of generic and specific forms have also at one time or other occupied an extensive area.
Discontinuity a Proof of Antiquity.—Discontinuity will therefore be an indication of antiquity, and the more widely the fragments are scattered the more ancient we may usually presume the parent group to be. A striking example is furnished by the strange reptilian fishes forming the order or sub-order Dipnoi, which includes the Lepidosiren and its allies. Only three or four living species are known, and these inhabit tropical rivers situated in the remotest continents. The Lepidosiren paradoxa is only known from the Amazon and some other South American rivers. An allied species, Lepidosiren annectens, sometimes placed in a distinct genus, inhabits the Gambia in West Africa, while the recent discovery in Eastern Australia of the Ceratodus or mud-fish of Queensland, adds another form to the same isolated group. Numerous fossil teeth, long known from the Triassic beds of this country, and also found in Germany and India in beds of the same age, agree so closely with those of the living Ceratodus that both are referred to the same genus. No more recent traces of any such animal have been discovered, but the Carboniferous Ctenodus and the Devonian Dipterus evidently belong to the same group, while in North America the Devonian rocks have yielded a gigantic allied form which has been named Heliodus by Professor Newberry. Thus an enormous range in time is accompanied by a very wide and scattered distribution of the existing species.
Whenever, therefore, we find two or more living genera belonging to the same family or order but not very closely allied to each other, we may be sure that they are the remnants of a once extensive group of genera; and if we find them now isolated in remote parts of the globe, the natural inference is that the family of which they are fragments once had an area embracing the countries in which they are found. Yet this simple and very obvious explanation has rarely been adopted by naturalists, who have instead imagined changes of land and sea to afford a direct passage from the one fragment to the other. If there were no cosmopolitan or very wide-spread families still existing, or even if such cases were rare, there would be some justification for such a proceeding; but as about one-fourth of the existing families of land mammalia have a range extending to at least three or four continents, while many which are now represented by disconnected genera are known to have occupied intervening lands or to have had an almost continuous distribution in tertiary times, all the presumptions are in favour of the former continuity of the group. We have also in many cases direct evidence that this former continuity was effected by means of existing continents, while in no single case has it been shown that such a continuity was impossible, and that it either was or must have been effected by means of continents now sunk beneath the ocean.
Concluding Remarks.—When writing on the subject of distribution it usually seems to have been forgotten that the theory of evolution absolutely necessitates the former existence of a whole series of extinct genera filling up the gap between the isolated genera which in many cases now alone exist; while it is almost an axiom of "natural selection" that such numerous forms of one type could only have been developed in a wide area and under varied conditions, implying a great lapse of time. In our succeeding chapters we shall show that the known and probable changes of sea and land, the known changes of climate, and the actual powers of dispersal of the different groups of animals, were such as would have enabled all the now disconnected groups to have once formed parts of a continuous series. Proofs of such former continuity are continually being obtained by the discovery of allied extinct forms in intervening lands, but the extreme imperfection of the geological record as regards land animals renders it unlikely that this proof will be forthcoming in the majority of cases. The notion that if such animals ever existed their remains would certainly be found, is a superstition which, notwithstanding the efforts of Lyell and Darwin, still largely prevails among naturalists; but until it is got rid of no true notions of the former distribution of life upon the earth can be attained.
CHAPTER V
THE POWERS OF DISPERSAL OF ANIMALS AND PLANTS
Statement of the general question of Dispersal—The Ocean as a Barrier to the Dispersal of Mammals—The Dispersal of Birds—The Dispersal of Reptiles—The Dispersal of Insects—The Dispersal of Land Mollusca—Great Antiquity of Land-shells—Causes favouring the Abundance of Land-shells—The Dispersal of Plants—Special adaptability of Seeds for Dispersal—Birds as agents in the Dispersal of Seeds—Ocean Currents as agents in Plant Dispersal—Dispersal along Mountain-chains—Antiquity of Plants as affecting their Distribution.
In