Wind Energy Handbook. Michael Barton Graham. Читать онлайн. Newlib. NEWLIB.NET

Автор: Michael Barton Graham
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Физика
Год издания: 0
isbn: 9781119451167
Скачать книгу
by Richards and Mead, Noise and Acoustic Fatigue in Aeronautics (1968).

      1 Abbott, I.H. and von Doenhoff, A.E. (1959). Theory of Wing Sections. USA: Dover Books.

      2 Amiet, R. (1975). Acoustic radiation from an aerofoil in a turbulent stream. J. Sound Vib. 41: 407–420.

      3 Argyle, P., Watson, S., Montavon, C. et al. (2018). Modelling turbulence intensity within a large offshore wind‐farm. Wind Energy Res. https://doi.org/10.1002/we.2257.

      4 Betz, A. (1919). Schraubenpropeller mit geringstem Energieverlust. Delft: Gottinger Nachrichten.

      5 Betz, A. (1920). Das Maximum der theoretisch moglichen Ausnutzung des Windes durch Windmotoren. Zeitschrift fur das gesamte Turbinenwesen 26: 307–309.

      6 Brooks, T.F., Pope, D.S., and Marcolini, M.A. (1989). Airfoil self‐noise and prediction. NASA Ref. Pub. 1218.

      7 Castro, I.P. (1971). Wake characteristics of two‐dimensional perforated plates normal to an airstream. J. Fluid Mech. 46: 599–609.

      8 Conway, J.T. (1998). Exact actuator disc solutions for non‐uniform heavy loading and slipstream contraction. J. Fluid Mech. 365: 235–267.

      9 De Vaal, J.B., Hansen, M.O.L., and Moan, T. (2014). Effect of wind turbine surge motion on rotor thrust and induced velocity. Wind Energy 17: 105–121. https://doi.org/10.1002/we.1562.

      10 Drela, M. (1989). X‐Foil: an analysis and design system for low Reynolds number Airfoils. In: Low Reynolds Number Aerodynamics, vol. 54 (ed. T.J. Mueller), 1–12. Springer‐Verlag Lec. Notes in Eng.

      11 Eppler, R. (1990). Airfoil Design and Data. Berlin: Springer‐Verlag.

      12 Eppler, R. (1993). Airfoil Program System user's guide.

      13 Fugslang, P. and Bak, C. (2004). Development of the Risø wind turbine airfoils. Wind Energy 7: 145–162.

      14 Gault, D.E. (1957). A correlation of low speed airfoil section stalling characteristics with Reynolds number and airfoil geometry. NACA Tech. Note 3963.

      15 Giguere, P., Dumas, G., and Lemay, J. (1997). Gurney flap scaling for optimum lift‐to‐drag ratio. AIAA J. 35: 1888–1890.

      16 Glauert, H.( 1926). The analysis of experimental results in the windmill brake and vortex ring states of an airscrew. ARC R&M No. 1026.

      17 Glauert, H. (1935a). Airplane propellers. In: Aerodynamic Theory, vol. 4, Division L (ed. W.F. Durand), 169–360. Berlin: Julius Springer.

      18 Glauert, H. (1935b). Windmills and fans. In: Aerodynamic Theory, vol. 4, Division L (ed. W.F. Durand), 169–360. Berlin: Julius Springer.

      19 Goldstein, S. (1929). On the vortex theory of screw propeller. Proc. R. Soc. Lond. 123: 440.

      20 Himmelskamp, H. (1945). Profile investigations on a rotating airscrew. Doctoral thesis, Gottingen.

      21 Hoerner, S.F. (1965). Pressure drag on rotating bodies. In: Fluid‐Dynamic Drag, 3–13. Midland Park, NJ, USA: Hoerner.

      22 Howe, M.S. (1991). Noise produced by a saw‐tooth trailing edge. J. Acoust. Soc. Am. 90: 482–487.

      23 Jamieson, P. (2011). Innovation in Wind Turbine Design. UK: Wiley.

      24 Jamieson, P. (2018). Innovation in Wind Turbine Design, 2e. UK: Wiley.

      25 Johnson, S.J., van Dam, C.P., and Berg, D.E. (2008). Active load control techniques for wind turbines. Sandia Rept., SAND2008‐4809.

      26 Joukowski, J.N. (1920). Windmills of the NEJ type. Transactions of the Central Institute for Aero‐ Hydrodynamics of Moscow: 405–430.

      27 Katz, J. and Plotkin, A. (1991). Low Speed Aerodynamics: From Wing Theory to Panel Methods. New York, USA, McGraw‐Hill.

      28 Lanchester, F.W. (1915). A contribution to the theory of propulsion and the screw propeller. Trans. Inst. Naval Architects 57: 98.

      29 Lin, C.C. (1955). The Theory of Hydrodynamic Stability. UK: Cambridge University Press.

      30 Lock, C.N.H. (1924). Experiments to verify the independence of the elements of an airscrew blade. ARCR R&M No. 953.

      31 Lynch, C.E. and Smith, M. (2009). A computational study of the aerodynamics and aeroacoustics of a flat‐back airfoil using hybrid RANS‐LES. ResearchGate, https://www.researchgate.net/publication/253982002.

      32 Madsen, H.A., Mikkelsen, R.F., Oye, S. et al. (2007). A detailed investigation of the blade element momentum (BEM) model based on analytical and numerical results and proposal for modifications of the BEM model. Jnl. Physics Conf. Series 75: 012016.

      33 Madsen, H.A., Bak, C., Doessing, M. et al. (2010). Validation and modification of the blade element momentum theory based on comparisons with actuator disc simulations. Wind Energy 13: 373–389.

      34 Mikkelsen R.F. (2003). Actuator disc methods applied to wind turbines. PhD thesis, Tech. University of Denmark, Lyngby.

      35 Moriarty, P.J., Guidati, G., and Migliore, P. (2005). Prediction of turbulent inflow and trailing edge noise for wind turbines. AIAA paper 2005‐2881.

      36 Peters, D.A. and Modarres, R. (2013, 2014). A compact closed‐form solution for the optimum, ideal wind turbine. Wind Energy 17 (4): 589–603. Published online in 2013, https://doi.org/doi.org/10.1002/we.1592.

      37 Richards, E.J. and Meade, D.J. (1968). Noise and Acoustic Fatigue in Aeronautics. UK: Wiley.

      38 Ronsten, G. (1991). Static pressure measurements in a rotating and a non‐rotating 2.35 m wind turbine blade. Comparison with 2D calculations. Proceedings of the EWEC '91 Conference, Amsterdam.

      39 Sharpe, D.J. (2004). Aerodynamic momentum theory applied to an energy extracting actuator disc. Wind Energy 7: 177–188.

      40 Shen, W.Z., Mikkelsen, R.F., and Soerensen, J.N. (2005). Tip‐loss corrections for wind turbine computations. Wind Energy 8: 457–475.

      41 Snel, H., Houwink, R., Bousschers Piers, W.J., van Bussel, G.J.W. and Bruining, A. (1993). Sectional prediction of 3‐D effects for stalled flow on rotating blades and comparison with measurements. Proceedings of the EWEC '93 Conference, Lübeck‐Travemünde, Germany.

      42 Soerensen, J.N. and Shen, W.Z. (2002). Numerical modelling of wind turbine wakes. J. Fluids Eng. 124: 393–399.

      43 Soerensen, J.N. and van Kuik, G.A.M. (2011). General momentum theory for wind turbines at low tip speed ratios. Wind Energy 14: 821–839.

      44 Soerensen, J.N., Shen, W.Z., and Munduate, X. (1998). Analysis of wake states by a full‐field actuator‐disc model. Wind Energy 88: 73–88.

      45 Sørensen, N.N. (1995). General purpose flow solver applied to flow over hills. Risø‐R‐827(EN).

      46 Tangler, J. L., and Somers, D. M. (1995). NREL airfoil families for HAWTs. AWEA '95, Washington, DC, USA.

      47 Taylor, G.I. (1944). The air resistance of flat plates of very porous material. Aero. Res. Council (UK), Rept. & Memo. No. 2236.

      48 Timmer, W.A. and van Rooij, R.P.J.O.M. (2003). Summary of the Delft University wind turbine dedicated airfoils. J. Solar Energy Eng. 125: 488–496.

      49 Troldborg, N., Soerensen, J.N., and Mikkelsen, R.F. (2006). Actuator line computations of wakes of wind turbines in wind‐farms. IEA. Annual Rept. Annex XI Proc. Joint Action on Aerodynamics of Wind Turbines.

      50 Wagner, S., Bareiss, R., and Guidati, G. (1996). Wind Turbine Noise. New York: Springer Verlag.

      51 Wang, Q., Chen, J.T., Cheng, J.T. et al. (2015). Wind turbine airfoil design method with low noise and experimental analysis. J. Beijing Univ. Aero. Astro. 41: 23–28. Also as DTU‐Orbit: Скачать книгу