Уверенность в себе. Как повысить самооценку, преодолеть страхи и сомнения. Томас Чаморро-Премузик. Читать онлайн. Newlib. NEWLIB.NET

Автор: Томас Чаморро-Премузик
Издательство:
Серия:
Жанр произведения: Личностный рост
Год издания: 2013
isbn: 978-5-9614-3353-1
Скачать книгу
вообще отсутствуют нижние конечности, среднее число ног получается меньше двух. То же самое происходит, когда данные положительно асимметричны, что подразумевает, что большинство людей окажутся «ниже среднего». Известный пример: у большинства людей зарплата меньше среднестатистической, поскольку среднестатистическая зарплата раздута за счет небольшого количества людей со сверхвысокими зарплатами. Однако в большинстве случаев мы имеем дело с нормальным распределением переменных, что делает статистическое среднее примерно равным средней точке шкалы, а также наиболее часто встречающемуся значению.

      33

      J. Friedrich,“On Seeing Oneself as Less Self-serving Than Others: The Ultimate Self-serving Bias?” Teaching of Psychology 23, no. 2 (1996): 107–9.

      34

      E. Pronin, D. Y. Lin, and L. Ross, “The Bias Blind Spot: Perceptions of Bias in Self Versus Others,” Personality and Social Psychology Bulletin 28, no. 3 (2002): 369–81.

      35

      Ibid., 378.

      36

      T. Sharot, “The Optimism Bias,” Current Biology 21, no. 23 (2011): R941–45.

      37

      University of California, San Diego, “California’s Leadership in Tobacco Control Resulted in Lower Lung Cancer Rate, Study Finds,” ScienceDaily, September 29, 2010, http://www.sciencedaily.com/releases/2010/09/100929142131.htm.

      38

      D. Thompson, The Fix (London, UK: Harper Collins, 2012).

      39

      C. Colvin, J. Block, and D. C. Funder, “Overly Positive Self-Evaluations and Personality: Negative Implications for Mental Health,” Journal of Personality and Social Psychology 68, no. 6 (1995):1152–62.

      40

      Ibid., 1156.

      41

      Ibid., 1159.

      42

      R. Trivers, The Folly of Fools: The Logic of Deceit and Self-deception in Human Life (New York: Basic Books, 2011).

      43

      K. H. Lambird and T. Mann, “When Do Ego Threats Lead to Self-regulation Failure? Negative Consequences of Defensive High Self-esteem,” Personality and Social Psychology Bulletin 32, no. 9 (2006): 1177–87.

      44

      D. L. Paulhus, P. D. Harms, M. N. Bruce, and D. C. Lysy, “The Over-Claiming Technique: Measuring Self-Enhancement Independent of Ability,” Journal of Personality and Social Psychology 84, no. 4 (2003): 890–904.

/9j/4AAQSkZJRgABAQEAAQABAAD/2wBDAAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQICAQECAQEBAgICAgICAgICAQICAgICAgICAgL/2wBDAQEBAQEBAQEBAQECAQEBAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgL/wAARCANXAjoDAREAAhEBAxEB/8QAHwABAAEEAwEBAQAAAAAAAAAAAAcGCAkKAQQFAgML/8QAahAAAQQBAwMCBAIGBAgIBwEhAwECBAUGAAcRCBITFCEJFSIxI0EWJDJRYXEKgZHwFyUzQlKhsdEYOGJ3krbB8RknN0RXcpbV4Sg0Q1iXtRo2RoLUJjVFR1NVZWdzdHWDhYaVo7O009bX/8QAHgEBAAEFAQEBAQAAAAAAAAAAAAYDBAUHCAIBCQr/xABgEQACAQMDAgQEAwQFBgcKCA8BAgMABBEFEiEGMRMiQVEHFDJhI0JxFVKBkQhiobHwFiQzcsHRFzZ0gpKz0yU1Q1WUlbLS4fEJNFNWV2Nkc4OEk7TUJkZUGEV1o2Wiwv/aAAwDAQACEQMRAD8A3+NKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlW0dUmVdR+L4Zh7OmDC8My/Pck3UwTFL6Tn62z8Wwjbu6nHZmm4FjEpJ0eTYrWV4WPHGEVqmIZrVVG8qlJFml1PS7besFhO1wbmZgWMSRWk8sSxqCN0k9ykNuuSFHikkjFVGMcen6tcbDPe2sUTWsAO3x5Xu7eKRGba21Y7aSeckDJ8EKMlsVh42e+IF8SvercDr/2+29216W8yyfoK34wrZ42LVVZudXW+9cLIHRLG7uKebZZQkbELGLjhJhhBK6WIhobmuIg1a997pKRXmkdL9QXjeDp2s6xcaddBCSbS2tJoIrm9V2UeIEWYyiPYPJG2TkgV86ht5dKvtU0ezkW41CPQItXtGcYWa5urR7i1spF4CB5UEBlDkkujBcbtmTofxIOi39JYmLm39w5hJe479mhZZ6fIP8FhN4QmSKfawe760/6Lvz5s1VAlYlt6hx09O1rpHItUrNG1CSyjsVM51RZZLMYwbyKFpFd7QNj5lVEbEmHfwrFcqrEWtxI+nWlzcaqFs30pIDfgsGFg86RlFvNpb5XcZVC+PsxuXdjcuahZ16dLKdVw+iGXuWSr6npVFPyis2xucLzuoPe47W1hLiVcY9k9jjY6a8hpABKe1Y1gR71hmaxjnie1PGnK2qLqj2RE37FBNypwjxASJFuKOVdlLSxEFAwMciyZ2ENVzqCPpUemT6gPlrfWXSO2kJBimkkVykayAlQ5MboFYqxkRowC6kV1sL+IB0nbi9RG7HSthO6osg3s2Kgy7PePG4uJZuKm23gQo6SDy8pzqZjwqKADhCMa5LF6ONHMFPxAlaynbSJd6TqGuwuP2PpUjxT3Dnw40kRpFZNz7dx/ClcbdwaJGlUmMbq+3cT2Opafo1ypTVtViS4t7YAtNLA6wssyooP4f+c24LHGGniU4LqD0Nt/iMdGO7mfYBttt7vrjWQ5Ju1DySdtCcNbk8PE93gYc+SLLE2oz2xow0m4kitLEOkwNTPlGC0avVij+vVzb29zctNHFCxmt7WO9aJh4c3yUoQx3ghfEjWrh1InVSg3LuIyDVG8dbFUe5YLE921j4gO+Jb1d2bSSWPdHFceVgIpGViQVGWGK53S+It0YbL5xkO3m5G/WI45kWF2mH0e4RVjX1pje191uDIZDwSo3VzOnqJFRtpZ3Msoh1se6mwzSVIitZ2KjtUrENqM8EFmPGa7uWsoTwqTXqqHazhkYhJboKwZreNmkXgMAxUH7ekadDJLeOsPg2pvpFyGljsQzKb2WFSZY7TcjAXLosTbXKsQjlYm+LJ1gbvdDPRHuL1Z7KU22eY2O1cvFLC5xjcgeSvpckx3JcjqcWUdTZ4nMYWushyryHJGUjTAIIDxqjVe16WF3PcWuo6HaFVVdVvoNPcOGDxy3UqwRsMf/JOSZUYAsowpDgKc3oNhaa3a6zLHc82Gm3mpwyRsrxSR2NpLeOn3+YijCxSK2FZgxypyLc/iC9enVv0bdIvSfvxjNL08ZjnO8m6Wym0G4tTkNTuRX4lAvd93xw0eQYY6rtnzRVlWcrvUR53cWYP3G8JEQa5u6tQvXej9KWz4stXupLASyDM0c0EUssk2F/DaN1gdVjyGVnTLMA5GG0d11DoLqTrGZNtxoGmprAhVvw5baSe2gW23ld6zKbqNzNt2ERuNmWWr+d0Otvp86c5NZg2/O7eOQ92oe2Ttz8sw/CcbzDL8ig4NTmj1mTbnnwPD6y2tse20Bbkc1bGaNABava873Me5LO4uLPxdUktmZNP0t4lnlk/0doLgsLf5ydR4MDS7Tt3ldwBYeTzVUs7LUJrXS5JY1a41betuqcG6ljj8WWO1jY+LO0aZJVFLHawxuBWqP3e+Jx0QbF4FspuvuVvrUVG1HUStUzZ3dKpxnNsw25zEt4jH1AQ5niGOToFSSRHUhWevNFRAxzFerWhKrbo2V2vUFv0s8DRa9dbPDt3wpfeyKu12IjOTJHzvxiWMjIdc28csc2gXPU0LePo9kZFmkTLPGYgxkDwAeOCpSRSDHkPHIh8yMBWW+nXt0rdOG6+zmxe7W5y0m7+/7ns2f2+psMzzM8hzlRy0hOdXCw7Gpwog/Mhla6WWOjhxDlarhAM9lvZI+oarNolohk1G3j8WRD5BHGCwZ3kfbGqx7C0hLfhptdwquhb7cyJaaInUc8iro8r+GkqkOXcpE6qkSFpWMgljEWExIzbEJZWC9XdP4g3SDsxlWcYbuHvXj9Rd7WQqKz3b9BU5Rk1Ts9WZN3fILLd/IcXo5kDa+DLa3vES7kwm+JfM/sB+JqjDLHON8TgwG5NkJmIS3N4Ap+VFw+2E3HnUeFv3BmVSAzqDcPBNH4amMtcS2xvFgXz3JtFLBrr5ZczfLqUf8YpsOyTYW2Pjsbudf/R1sVkO1eK7pb/4Hi99vdXNuNpq9T2l07PqklfKtBWmOSMcrJgZta+BDMQZ0J4yIo0YrnFGj/b7o9Qv9KdGXUdNjklnh2t4kSRAM5dcZBUH6RliSAoJqnABc6ba6xA6S6XeyRRRXAdDE8k8ixxKr7tp3M45yAqhmYhVYijML+KD0F7gbLbpdQmLdS2By9pdkbt+ObvZLYR8nx+Xtrdt7lHX5rimQUEa5x45WDI6N6mvG2SwavA57Udx5u3SysNN1S4cJp+ruYraUYdJZVxvhXYW/GXI3RHDruXco3Lmra29xe6pf6NbQtJqemRrLPDgqyROxRZvMAGhdlYJKm5GKtgnBr42u+KL0F7zbr4Hsht11IYbebn7o4iDONtsYlVmYY4ufY7IgrZNNh1xlGNwoGSWbILXFNXw5RZ8difjRmORW6vo9PvZZ9VtUgLXWijdcxDBkjQYzJszukiUEb5Yw8ac7mADEY+e8tra30+7nmWO11SUwQSn/RvPuKCEycpHM7DEcchR5SR4atuXNTbjfES6Ntp8nzbFM730xmonbXWlDSbs2sauya7w7aG3yhArj1bu3nlDSSaXbObL9RH8Y7mdDc1DseZBMe1y2Nq63ghNuwMdzcNaRSEhIpbtCoa2ilfbHJOCwXwkctvIQDeQpvriKS0EnjoUkhtvnXjA3TpZgOfm3gTdMlvhGYSsgUqCwyoLC8iFYwbKBFtK2ZEsa6fEBYQJ8GQKVCmwZQWSIsuJKARzJMYscg3jIxysIwjXNcrVRVqTRzQPNDMhhnhLK