2. Закон Хаббла в физике Ньютона
Следует отметить, что закон Хаббла, полученный в формализме общей теории относительности, может быть выведен и средствами физики Ньютона. В интернете и в литературе нередко приводится условная иллюстрация расширения пространства на примере резинового шара с наклеенными на него монетками-галактиками. Раздувание шара приводит к тому, что расстояние между монетами возрастает, причём каждая из них может считать себя центром, от которого удаляются все остальные.
Используем эту аллегорию для получения закона Хаббла без использования уравнений общей теории относительности. Действительно, резиновый шар – вполне реальный физический объект, к которому применимы все положения физики Ньютона.
Вырежем из этого шара достаточно большого размера, диаметра узкую полосу, шнур с монетами-галактиками. Закрепим один конец полосы, то есть, формально перейдём в систему отсчёта галактики, находящейся на этом конце шнура. Галактику на противоположном конце начнём оттягивать, растягивая полосу. Запишем уравнение для постоянной или средней скорости этой движущейся галактики следующим образом:
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.