Давно замечено одно интересное и важное свойство математики – делать верные описания нашего мира, предсказания, на первых порах кажущиеся буквально выдумками:
"… почему математика столь эффективна при описании нашего мира и столь хорошо описывает его эволюцию? … Почему эти правила так хорошо работают?" (Линде)
Вряд ли следует слишком уж сильно этому удивляться. Эта математика так хорошо работает просто потому, что мы и вывели её из прямых наблюдений за окружающей действительностью. Эффективно работает, значит, верно подсмотрели. Более того, в науке и в физике, в частности, уже давно замечена еще одна интересная закономерность: кажущиеся поначалу абстрактными математические выражения, уравнения вдруг оказываются описанием какого-нибудь вполне реального явления:
"… физики обнаруживают, что математические построения, необходимые им для описания нового класса явления, уже исследованы математиками по причинам, не имеющим ничего общего с обсуждаемыми явлениями" (Виленкин).
Однако даже при таком явно полезном подходе следует все-таки быть предельно осторожным при формулировке выводов и следствий из этих математических построений. Можно привести ряд примеров, когда такие выкладки приводят не просто к противоречиям со здравым смыслом, но к довольно заметным противоречиям с логикой, содержат логические ошибки.
В предлагаемой работе мы покажем, что математические выводы в физике во многом зависят как от их последующей трактовки, так и от предположений, оснований, исходных положений, использованных в процессе получения этих выводов. Вообще говоря, это очевидно: если изменить исходные положения, заявить истинными другие, выводы также будут иными, а то и противоположными. Но какие из этих взаимоисключающих выводов верны?
Нас интересуют логические построения, послужившие основой для утверждения об ускоренном расширении Вселенной, опирающиеся на факт пониженной яркости дальних сверхновых. Поскольку детали этой логики нам неизвестны, мы проведём собственные построения, пытаясь прийти к такому же выводу, утверждению.
В дальнейшем мы используем следующую систему обозначений. Все дистанции мы измеряем в миллиардах световых лет, а время – в миллиардах лет. В этом случае скорость света равна единице. Обозначение шкалы скоростей v/c и означает, что значения представлена в долях от скорости света.
У переменных, параметров и графиков нижние индексы состоят из букв и их комбинаций: a – ускорение (accelerate); d – замедление (decelerate); s – условная стационарность, на отдельном участке; о – неизменный, обычный, традиционный. Например, ad – обозначает ускорение – замедление и наоборот. Возможны и более длинные индексы, поскольку некоторые параметры на всём протяжении состоят из нескольких участков: ada – ускорение, замедление, ускорение. Последний индекс – o, по сути, является эквивалентом нуля, используемый просто для удобства записи. То есть, Ho и H0 – это один и тот же параметр Хаббла в нашей Вселенной. Некоторые параметры имеют отдельные обозначения: Rф – график движения фотонов в системе отсчёта сверхновой; Rco – путь, пройденный фотонами по их измерениям; Rc и Vc – графики движения условного источника фотонов, пройденный им путь и его скорость.
Большинство параметров на приводимых диаграммах зависят от времени, однако эту зависимость в их обозначениях для краткости мы чаще всего опускаем.
Все рассмотренные Вселенные и параметры их расширения являются вымышленными, условными и имеют к настоящей, нашей Вселенной лишь качественное, демонстрационное отношение. При этом на одной диаграмме для сопоставления будут изображены параметры движения сразу нескольких Вселенный, никак не связанных друг с другом.
Переменные параметры Хаббла
В основу всех построений, в качестве базового, фундаментального принципа мы положим закон изменения во времени параметра Хаббла. Именно он определяет скорость расширения Вселенной. Скорость его изменения во времени, собственно, и является показателем, эквивалентом ускоренности расширения пространства. Параметр Хаббла неявно, но всегда присутствует на диаграммах Хаббла, зависимости R(v), удалённости некого космологического объекта от скорости его удаления от наблюдателя, Земли. Мы не используем диаграммы Хаббла вида R(z), в частности, по причине их двусмысленности. Связь скорости и красного смещения линейна лишь при малых значениях скорости,