Renewable Integrated Power System Stability and Control. Hassan Bevrani. Читать онлайн. Newlib. NEWLIB.NET

Автор: Hassan Bevrani
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Техническая литература
Год издания: 0
isbn: 9781119689775
Скачать книгу
Rerkpreedapong, D., Hasanovic, A., and Feliachi, A. (2003). Robust load frequency control using genetic algorithms and linear matrix inequalities. IEEE Transactions on Power Systems 18 (2): 855–861.

      50 50. Ojaghi, P. and Rahmani, M. (2017). LMI‐based robust predictive load frequency control for power systems with communication delays. IEEE Transactions on Power Systems 32 (5): 4091–4100.

      51 51. Zhang, C., Jiang, L., Wu, Q.H. et al. (2013). Delay‐dependent robust load frequency control for time delay power systems. IEEE Transactions on Power Systems 28 (3): 2192–2201.

      52 52. Zhao, J., Mili, L., and Milano, F. (2018). Robust frequency divider for power system online monitoring and control. IEEE Transactions on Power Systems 33 (4): 4414–4423.

      53 53. Aliabadi, S.F., Taher, S.A., and Shahidehpour, M. (2018). Smart deregulated grid frequency control in presence of renewable energy resources by EVs charging control. IEEE Transactions on Smart Grid 9 (2): 1073–1085.

      54 54. Wang, D., Liang, L., Hu, J. et al. (2018). Analysis of low‐frequency stability in grid tied DFIGs by non‐minimum phase zero identification. IEEE Transactions on Energy Conversion 33 (2): 716–729.

      55 55. Liu, Y., Jiang, L., Wu, Q.H., and Zhou, X. (2017). Frequency control of DFIG‐based wind power penetrated power systems using switching angle controller and AGC. IEEE Transactions on Power Systems 32 (2): 1553–1567.

      56 56. Pradhan, C. and Bhende, C.N. (2017). Frequency sensitivity analysis of load damping coefficient in wind farm‐integrated power system. IEEE Transactions on Power Systems 32 (2): 1016–1029.

      57 57. Golpira, H., Seifi, H., Messina, A.R., and Haghifam, M. (2016). Maximum penetration level of microgrids in large‐scale power systems: frequency stability viewpoint. IEEE Transactions on Power Systems 31 (6): 5163–5171.

      58 58. Leon, A.E. (2018). Short‐term frequency regulation and inertia emulation using an MMC‐based MTDC system. IEEE Transactions on Power Systems 33 (3): 2854–2863.

      59 59. Rakhshani, E., Remon, D., Cantarellas, A.M. et al. (2017). Virtual synchronous power strategy for multiple HVDC interconnections of multi‐area AGC power systems. IEEE Transactions on Power Systems 32 (3): 1665–1677.

      60 60. Li, D., Zhu, Q., Lin, S., and Bian, X.Y. (2017). A self‐adaptive inertia and damping combination control of VSG to support frequency stability. IEEE Transactions on Energy Conversion 32 (1): 397–398.

      61 61. Wu, Y., Yang, W., Hu, Y., and Dzung, P.Q. (2019). Frequency regulation at a wind farm using time varying inertia and droop controls. IEEE Transactions on Industry Applications 55 (1): 213–224.

      62 62. Fang, J., Li, H., Tang, Y., and Blaabjerg, F. (2018). Distributed power system virtual inertia implemented by grid‐connected power converters. IEEE Transactions on Power Electronics 33 (10): 8488–8499.

      63 63. Li, Y., Xu, Z., Ostergaard, J., and Hill, D.J. (2017). Coordinated control strategies for offshore wind farm integration via VSC‐HVDC for system frequency support. IEEE Transactions on Energy Conversion 32 (3): 843–856.

      64 64. Ahmadyar, A.S. and Verbic, G. (2017). Coordinated operation strategy of wind farms for frequency control by exploring wake interaction. IEEE Transactions on Sustainable Energy 8 (1): 230–238.

      65 65. Izadkhast, S., Garcia‐Gonzalez, P., Frias, P., and Bauer, P. (2017). Design of plug‐in electric vehicle's frequency‐droop controller for primary frequency control and performance assessment. IEEE Transactions on Power Systems 32 (6): 4241–4254.

      66 66. Hwang, M., Muljadi, E., Jang, G., and Kang, Y.C. (2017). Disturbance‐adaptive short‐term frequency support of a DFIG associated with the variable gain based on the ROCOF and rotor speed. IEEE Transactions on Power Systems 32 (3): 1873–1881.

      67 67. Attya, A.B.T. and Dominguez‐Garcia, J.L. (2018). Insights on the provision of frequency support by wind power and the impact on energy systems. IEEE Transactions on Sustainable Energy 9 (2): 719–728.

      68 68. Tielens, P. and Van Hertem, D. (2017). Receding horizon control of wind power to provide frequency regulation. IEEE Transactions on Power Systems 32 (4): 2663–2672.

      69 69. Garmroodi, M., Verbic, G., and Hill, D.J. (2018). Frequency support from wind turbine generators with a time‐variable droop characteristic. IEEE Transactions on Sustainable Energy 9 (2): 676–684.

      70 70. Khooban, M., Dragicevic, T., Blaabjerg, F., and Delimar, M. (2018). Shipboard microgrids: a novel approach to load frequency control. IEEE Transactions on Sustainable Energy 9 (2): 843–852.

      71 71. Benysek, G., Bojarski, J., Smolenski, R. et al. (2018). Application of stochastic decentralized active demand response (DADR) system for load frequency control. IEEE Transactions on Smart Grid 9 (2): 1055–1062.

      72 72. Vrettos, E., Ziras, C., and Andersson, G. (2017). Fast and reliable primary frequency reserves from refrigerators with decentralized stochastic control. IEEE Transactions on Power Systems 32 (4): 2924–2941.

      73 73. Short, J.A., Infield, D.G., and Freris, L.L. (2007). Stabilization of grid frequency through dynamic demand control. IEEE Transactions on Power Systems 22 (3): 1284–1293.

      74 74. Molina‐Garcia, A., Bouffard, F., and Kirschen, D.S. (2011). Decentralized demand‐side contribution to primary frequency control. IEEE Transactions on Power Systems 26 (1): 411–419.

      75 75. Zhao, H., Wu, Q., Huang, S. et al. (2018). Hierarchical control of thermostatically controlled loads for primary frequency support. IEEE Transactions on Smart Grid 9 (4): 2986–2998.

      76 76. Yao, E., Wong, V.W.S., and Schober, R. (2017). Robust frequency regulation capacity scheduling algorithm for electric vehicles. IEEE Transactions on Smart Grid 8 (2): 984–997.

      77 77. Ferraro, P., Crisostomi, E., Raugi, M., and Milano, F. (2017). Analysis of the impact of microgrid penetration on power system dynamics. IEEE Transactions on Power Systems 32 (5): 4101–4109.

      78 78. Ferraro, P., Crisostomi, E., Shorten, R., and Milano, F. (2018). Stochastic frequency control of grid connected microgrids. IEEE Transactions on Power Systems 33 (5): 5704–5713.

      79 79. Larsen, E. and Sener, F. (1996). Facts Applications. Catalogue No. 96TP116‐0.

      80 80. IEEE (1990). Voltage Stability of Power Systems: Concepts, Analytical Tools and Industry Experience. IEEE Technical Report 90YH0358‐2‐PWR. IEEE/PES.

      81 81. Balu, C. and Maratukulam, D. (1994). Power System Voltage Stability. McGraw‐Hill.

      82 82. Van Cutsem, T. and Vournas, C. (2007). Voltage Stability of Electric Power Systems. Springer Science & Business Media.

      83 83. Kamwa, I., Grondin, R., and Hebert, Y. (2001). Wide‐area measurement based stabilizing control of large power systems – a decentralized/hierarchical approach. IEEE Transactions on Power Systems 16 (1): 136–153.

      84 84. Taylor, C.W., Erickson, D.C., Martin, K.E. et al. (2005). WACS wide‐area stability and voltage control system: R & D and online demonstration. Proceedings of the IEEE 93 (5): 892–906.

      85 85. Andersson, G., Bel, C.A., and Canizares, C. (2009). Frequency and voltage control. In: Electric Energy Systems: Analysis and Operation. CRC Press.

      86 86. Ilic, M.D., Liu, X., Leung, G. et al. (1995). Improved secondary and new tertiary voltage control. IEEE Transactions on Power Systems 10 (4): 1851–1862.

      87 87. Corsi, S., Pozzi, M., Sabelli, C., and Serrani, A. (2004). The coordinated automatic voltage control of the Italian transmission grid‐Part I: reasons of the choice and overview of the consolidated hierarchical system. IEEE Transactions on Power Systems 19 (4): 1723–1732.

      88 88. Corsi, S., Pozzi, M., Sforna, M., and Dell'Olio, G. (2004). The coordinated automatic voltage control of the italian transmission grid‐Part II: control apparatuses and field performance of the consolidated hierarchical system. IEEE Transactions on Power Systems 19 (4): 1733–1741.

      89 89. Guo, Q., Sun, H., Zhang, M. et al. (2013). Optimal voltage control of PJM smart transmission grid: study, implementation,