Industrial Carbon and Graphite Materials. Группа авторов. Читать онлайн. Newlib. NEWLIB.NET

Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Техническая литература
Год издания: 0
isbn: 9783527674053
Скачать книгу
in the production for some granular specialties.

      Crucial during the heat treatment to graphitization temperatures is the release of the incorporated heteroatoms sulfur and nitrogen. The release of nitrogen starts at around 1670 K followed by the release of sulfur at around 1870 K [37, 38]. Both volatiles lead to an irreversible expansion with the potential to destroy the polygranular artifact. This behavior is named as puffing [39, 40].

      During further heat treatment to graphitization temperatures above 2500 K, lattice defects are eliminated, combined with the growth of the graphene layers in a‐ and c‐direction (La = apparent crystallite size, Lc = mean stacking height) and the narrowing of the interlayer distance toward the value of the ideal graphite crystal. The development of the graphite crystal under graphitization temperatures was investigated in situ by X‐ray diffraction up to 2870 K [41]. This investigation showed that prior to the interlayer distance shrinkage, defects in the layers must be healed enabling the necessary parallel arrangement.

Schematic illustration of the structural development of a graphitizable carbon during heat treatment up to graphitization temperatures.

      Gas‐phase pyrolysis is characterized by thermal cracking of gaseous hydrocarbon compounds and deposition of carbon on a substrate. Traditional industrial examples are carbon black and pyrolytic carbon. But also vapor‐grown carbon fibers (VGCFs) and carbon nanoparticles (fullerenes, nanotubes, nanocaps) are generated by gas‐phase pyrolysis.

      1 1 Fitzer, E., Funk, U., and Rozploch, F. (1974). 4th London International Carbon and Graphite Conference.

      2 2 Bernal, J.D. (1924). Proc. R. Soc. London, Ser. A 106: 749.

      3 3 Kelly, B.T. (1981). Physics of Graphite. London: Applied Science Publishers.

      4 4 Dutta, A.K. (1953). Phys. Rev. 90: 187.

      5 5 Poquet, E., Lumbroso, N., Hoaran, J. et al. (1960). J. Chim. Phys. Phys.‐ Chim. Biol. 57: 866.

      6 6 Grisdale, R.O., Pfister, A.C., and Roosbrock, W. (1951). Bell Syst. Tech. J. 30: 271.

      7 7 Reynolds, W.N. (1968). Physical Properties of Graphite. New York, NY: Elsevier.

      8 8 Franklin, R. (1951). Acta Crystallogr. 4: 253.

      9 9 Mering, J. and Maire, J. (1960). J. Chim. Phys. Phys.‐ Chim. Biol. 57: 803.

      10 10 Houska, C.R. and Warren, B.E. (1954). J. Appl. Phys. 25: 1503.

      11 11 Fitzer, E., Köchling, K.‐H., Boehm, H.P., and Marsh, H. (1995). Pure Appl. Chem. 67 (3): 473–506.

      12 12 Ruland, W. (1968). Chemistry and Physics of Carbon, vol. 4 (ed. P.L. Walker), 1. New York, NY: Marcel Dekker.

      13 13 Frohs, W. (1989). Untersuchungen zum thermischen Abbau von Polyacrylnitril(PAN)‐Precursorfasern zu Carbonfasern im Temperaturbereich von 500 bis 2800 °C. PhD thesis. University of Karlsruhe.

      14 14 Hembacher, S., Giessibl, F., Mannhart, J., and Quate, C. (2003). Proc. Natl. Acad. Sci. U.S.A. 100 (22): 12539–12542.

      15 15 Orris, G.J. and Bliss, J.D. (1991). Some Industrial Mineral Deposit Models: Descriptive Deposit Models. US Geological Survey.

      16 16 Spatzek, H. and Mayr‐Melnhof, F. (1972). International Carbon Conference 1972 Baden‐Baden (25–30 June 1972). Baden‐Baden, 351.

      17 17 Erhard, K., personal communication.

      18 18 Menéndez, R. (2005). Anthracene oil pitch for needle coke production. III. International Pitch & Calcined Petroleum Conference, Hotel Arts, Barcelona, Spain, September 2005.

      19 19 Brooks, J.D. and Taylor, G.H. (1968). Chemistry and Physics of Carbon, vol. 4 (ed. P.L. Walker), 243. New York, NY: Marcel Dekker.

      20 20 Marsh, H. and Walker, P.L. (1979). Chemistry and Physics of Carbon, vol. 15 (eds. P.L. Walker and P.A. Thrower), 229. New York, NY: Marcel Dekker.

      21 21 Holley, C. (1985). Ausbildung von Koksgefügen während der Flüssigphasenpyrolyse von Pechen und ihre Bedeutung bezüglich der physikalischen Kokseigenschaften. PhD thesis. University Karlsruhe.

      22 22 Hüttinger, K.J. (1973). Bitumen, Teere, Asphalte, Peche 6: 3.

      23 23 Kovac, C.A. and Lewis, I.C. (1978). Carbon 16: 433.

      24 24 Brooks, J.D. and Taylor, G.H. (1965). Carbon 3: 185–186.

      25 25 Fitzer, E., Müller, K., and Schaefer, W. (1971). Chemistry and Physics of Carbon, vol. 7 (ed. P.L. Walker), 237. New York, NY: Marcel Dekker.

      26 26 Lewis, I.C. (1982). Carbon 20: 519.

      27 27 Elkem (2003). Electric arc calcining furnace (J.A. Aune, L.P. Larsen, P.O. Nos, G. Aas) WO 03/027012 A1.

      28 28 Kawamura, R. and Wakasa, T. (2001). Improvement in the calcination process of anthracite for cathode carbon blocks. Light Metals 2001, New Orleans, LA 2001, Conference abstracts, 711–716.

      29 29 Acheson, E.G. (1895). US Patent 5,68,323.

      30 30 Castner, J.H. (1893). GB 19089.

      31 31 Graphite Synthesis Company (1979). (R. Markel, M. Goldberger). US Patent 4,160,813.

      32 32 Bokros, J.C. (1969). Chemistry and Physics of Carbon, vol. 5 (ed. P.L. Walker), 1. New York, NY: Marcel Dekker.

      33 33 Currie, L.M., Hamister, V.C., and MacPherson, H.G. (1956). Proceedings of International Conference on the Peaceful Uses of Atomic Energy, vol. 8, 451. New York, NY: United Nations.

      34 34 Lux, B. (1970). Giessereiforschung 22 (65): 161.

      35 35 Boehm, H.P. (1978). Carbon 16: 385.

      36 36 United Aircraft Corp. (1965). (W.E. Arnoldi, P.J. Birbara, S. Russell). FR 1 433 002.

      37 37 Wagner, M.H., Jäger, H., Letizia, I., and Wilhelmi, G. (1987). Anomalous puffing of coal tar pitch needle coke, effect of residual nitrogen content. 18th Biennial Conference on Carbon, Worcester, MA, 38–39.

      38 38 Fitzer, E., Frohs, W., Hannes, G., and Kompalik, D. (1987). Sulphur and nitrogen puffing of petroleum and coal tar pitch cokes. 18th Biennial Conference on Carbon, Worcester, MA, 40–41.

      39 39 Fujimoto, K., Sato, M., Yamada, M. et al. (1986). Carbon 24: 397–401.

      40 40 Fujimoto, K., Mochida, I., Todo, Y. et al. (1989). Carbon 27: 909–917.

      41 41 Fitzer, E. and Weisenburger, S. (1972). Direktverfolgung der thermischen Graphitierung eines Pechkokses durch röntgenographische Messungen der Basisreflexe (001) und der Modulation der zweidimensionalen (hk) Reflexe unter währenden Bedingungen bis 2600°C. International Carbon Conference, Baden‐Baden, 130–132.

      42 42 Ubbelohde, A.R., Young, D.A., and Moore, A.W. (1963). Nature (London) 198: 1192.

      43 43 Marsh, H. and Griffith, J. (1982). International Symposium on Carbon, Toyohashi, Japan, 81.

      1 Delhaès, P. (ed.) (2001). Graphite and Precursors, vol. 1. Amsterdam: Gordon and Breach.

      2 Inagaki, M. (ed.) (2000). New Carbons, 1e. Amsterdam: Elsevier.

      3 Pierson, H.O. (1993).