Таранные кости животных, использовавшиеся для игр (например, для игры в бабки).
Математики довольно долго обходили вниманием вопросы случайности, традиционно считавшиеся прерогативой религии. Как восточные, так и западные философии в исходе многих событий видели божий промысел или волю иных высших сил. Из Китая пришла “И Цзин” (“Книга перемен”), система гадания, основанная на толковании 64 различных гексаграмм. Некоторые христиане пользовались для принятия решения более простым методом – вытягиванием соломинок, заложенных между страниц Библии. Эти и множество других интереснейших методик прогнозирования, к сожалению, имели один отрицательный эффект – слишком долго никто не предпринимал попыток рационально объяснить природу случайности. В конце концов, если исход событий предопределен силами, недоступными пониманию человека, зачем суетиться и пытаться логически анализировать, почему все происходит так, а не иначе? К чему выяснять, нет ли каких-то законов, которым подчиняется вероятность того или иного исхода?
Как-то не верится, что, бросая кости, древние греки или римляне не имели хотя бы интуитивного представления о вероятности выпадения того или иного варианта. Когда речь идет о деньгах или иной материальной выгоде, и игроки, и другие заинтересованные стороны очень быстро схватывают все нюансы игры. Так что, скорее всего, какое-то внутреннее чутье, понимание шансов благоприятного исхода сформировалось не одно тысячелетие назад. Ну а наука всерьез взялась за изучение случайности и вероятности только в период позднего Возрождения и в XVII веке. В авангарде научных открытий в области случайности и вероятности в то время шли французский математик и философ (и к тому же ревностный янсенист) Блез Паскаль и его соотечественник Пьер де Ферма. Эти двое великих мыслителей взялись решить задачу, которую упрощенно можно сформулировать так: предположим, два игрока подбрасывают монету и денежный выигрыш достается тому, кто первым наберет три очка. Однако игра прерывается, скажем, в тот момент, когда один из игроков ведет со счетом 2:1. Как тогда разделить выигрыш между игроками наиболее справедливым образом? Еще до Паскаля и Ферма было предложено немало решений этой задачи.