Heterogeneous Catalysts. Группа авторов. Читать онлайн. Newlib. NEWLIB.NET

Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Техническая литература
Год издания: 0
isbn: 9783527813582
Скачать книгу
bulk and surface, good adsorption of reactants at the surface, fast surface transfer of charge carriers from catalysts to reactants, and suitable CBM and VBM position to provide electron–hole pairs with sufficient redox potentials to catalyze the reactions. Each aspect is affected by one or more properties of the surface and bulk. And these effects are not isolated and may affect one another. Figure 2.6 shows how the properties synergistically affect the reactivity and selectivity of semiconductor catalysts and the significance of facets engineering.

Diagram of how the facets engineering affects the selectivity and reactivity of a semiconductor photocatalyst.

      Although we have attained a good understanding on the mechanisms of facets engineering, we are still facing many challenges, uncertainties, and uncontrollability, such as surface reconstruction. Surface reconstructions always take place on most crystals as a natural phenomenon to minimize surface energy. In many cases where the active facets are the high surface energy facets composed of a high percentage of unsaturated atoms, they become highly unstable upon the removal of capping agents. It inevitably led to the rearrangement of surface atoms or the formation of surface defects, which would have a profound impact on the catalytic properties of the surface.

      More efforts need to be dedicated to developing new synthesis methods for new active facets and structure to reveal new facets‐dependent properties and the synergy between these properties and to control surface defects and identify the substantial differences between the ideal and real surface. There is no doubt that facets engineering is an important strategy to promote the performance of catalysts and provides a valuable platform for the rational design and fabrication of efficient material system.

      1 1 Xia, Y.N., Xiong, Y.J., Lim, B., and Skrabalak, S.E. (2009). Angew. Chem. Int. Ed. 48: 60–103.

      2 2 Liu, G., Yang, H.G., Pan, J. et al. (2014). Chem. Rev. 114: 9559–9612.

      3 3 Burda, C., Chen, X.B., Narayanan, R., and El‐Sayed, M.A. (2005). Chem. Rev. 105: 1025–1102.

      4 4 Pan, J. and Liu, G. (2017). Semicond. Semimet. 97: 349–391.

      5 5 Xia, Y.N. and Halas, N.J. (2005). MRS Bull. 30: 338–344.

      6 6 Wang, A.Q., Li, J., and Zhang, T. (2018). Nat. Rev. Chem. 2: 65–81.

      7 7 Bohme, D.K. and Schwarz, H. (2005). Angew. Chem. Int. Ed. 44: 2336–2354.

      8 8 Jiang, H.B., Cuan, Q.A., Wen, C.Z. et al. (2011). Angew. Chem. Int. Ed. 50: 3764–3768.

      9 9 Wang, Z.Y., Huang, B.B., Dai, Y. et al. (2012). CrystEngComm 14: 4578–4581.

      10 10 Wang, J.H., Yang, T.H., Wu, W.W. et al. (2006). Nanotechnology 17: 719–722.

      11 11 Kim, C., Gu, W.H., Briceno, M. et al. (2008). Adv. Mater. 20: 1859–1863.

      12 12 Pan, J., Liu, G., Lu, G.M., and Cheng, H.M. (2011). Angew. Chem. Int. Ed. 50: 2133–2137.

      13 13 Pan, J., Wu, X., Wang, L.Z. et al. (2011). Chem. Commun. 47: 8361–8363.

      14 14 Zhao, X., Jin, W., Cai, J. et al. (2011). Adv. Funct. Mater. 21: 3554–3563.

      15 15 Mallikarjuna, N.N. and Varma, R.S. (2007). Cryst. Growth Des. 7: 686–690.

      16 16 Praneeth, N.V.S. and Paria, S. (2018). CrystEngComm 20: 4297–4304.

      17 17 Yu, Y.Y., Chang, S.S., Lee, C.L., and Wang, C.R.C. (1997). J. Phys. Chem. B 101: 6661–6664.

      18 18 Kim, F., Song, J.H., and Yang, P.D. (2002). J. Am. Chem. Soc. 124: 14316–14317.

      19 19 Placido, T., Comparelli, R., Giannici, F. et al. (2009). Chem. Mater. 21: 4192–4202.

      20 20 Lovette, M.A., Browning, A.R., Griffin, D.W. et al. (2008). Ind. Eng. Chem. Res. 47: 9812–9833.

      21 21 Gong, X.‐Q. and Selloni, A. (2007). Phys. Rev. B 76: 235307‐1–235307‐11.

      22 22 Lazzeri, M., Vittadini, A., and Selloni, A. (2002). Phys. Rev. B 65: 155409.

      23 23 Liu, G., Yu, J.C., Lu, G.Q., and Cheng, H.M. (2011). Chem. Commun. 47: 6763–6783.

      24 24 Harris, P.J.F. (1986). Nature 323: 792–794.

      25 25 Cha, S.I., Mo, C.B., Kim, K.T. et al. (2006). J. Mater. Res. 21: 2371–2378.

      26 26 Sun, Y.G. and Xia, Y.N. (2002). Science 298: 2176–2179.

      27 27 Xiong, Y.J., Cai, H.G., Yin, Y.D., and Xia, Y.N. (2007). Chem. Phys. Lett. 440: 273–278.

      28 28 Yang, H.G., Sun, C.H., Qiao, S.Z. et al. (2008). Nature 453: 638–641.

      29 29 Huang, W.C., Lyu, L.M., Yang, Y.C., and Huang, M.H. (2012). J. Am. Chem. Soc. 134: 1261–1267.

      30 30 Zhang, D.F., Zhang, H., Guo, L. et al. (2009). J. Mater. Chem. 19: 5220–5225.

      31 31 Sui, Y.M., Fu, W.Y., Zeng, Y. et al. (2010). Angew. Chem. Int. Ed. 49: 4282–4285.

      32 32 Liu, L., Qian, J.S., Li, B. et al. (2010). Chem. Commun. 46: 2402–2404.

      33 33 Schlogl, R. (2015). Angew. Chem. 54: 3465–3520.

      34 34 Tian, N., Zhou, Z.Y., Sun, S.G. et al. (2007). Science 316: 732–735.

      35 35 Sun, C.H., Liu, L.M., Selloni, A. et al. (2010). J. Mater. Chem. 20: 10319–10334.

      36 36 Vittadini, A., Selloni, A., Rotzinger, F.P., and Gratzel, M. (1998). Phys. Rev. Lett. 81: 2954–2957.

      37 37 Herman, G.S., Dohnalek, Z., Ruzycki, N., and Diebold, U. (2003). J. Phys. Chem. B 107: 2788–2795.

      38 38 Diebold, U. (2003). Surf. Sci. Rep. 48: 53–229.

      39 39 Onda, K., Li, B., Zhao, J. et al. (2005). Science 308: 1154–1158.

      40 40 He, Y., Tilocca, A., Dulub, O. et al. (2009). Nat. Mater. 8: 585–589.

      41 41 Selloni, A., Vittadini, A., and Gratzel, M. (1998). Surf. Sci. 402: 219–222.

      42 42 Kittel, C. (2004). Introduction to Solid State Physicis, 8e. Wiley.

      43 43 Yamamoto, Y. and Miyokawa, T. (1998). J. Vac. Sci. Technol., B 16: 2871–2875.

      44 44 Kaminsky, M. (1965). Atomic and Ionic Impact Phenomena on Metal Surfaces. Academic Press.

      45 45 Dweydari, A.W. and Mee, C.H.B. (1975). Phys. Status Solidi A 27: 223–230.

      46 46 Asahi, R., Taga, Y., Mannstadt, W., and Freeman, A.J. (2000). Phys. Rev. B 61: 7459–7465.

      47 47 Liu, G., Sun, C.H., Yang, H.G. et al. (2010). Chem. Commun. 46: 755–757.

      48 48 Bi, Y., Ouyang, S., Umezawa, N. et al. (2011). J. Am. Chem. Soc. 133: 6490–6492.

      49 49 Wang, X., Yin, L., Liu, G. et al. (2011). Energy Environ.